
J277 - 2.1 Algorithms

J277 - 2.1 Algorithms

Key techniques for computational thinking

Representing 'real world'
problems in a computer using
variables and symbols and
removing unnecessary elements
from the problem.

Abstraction Decomposition

Breaking down a large problem
into smaller sub-problems.

Algorithmic
thinking

1. List all potential routes.
2. Find lengths of each route.
3. Calculate time for each route.
4. Find route with shortest time.

Example: Find the quickest route by car between two places.

Details to
ignore

Details to
focus on

Distance crow
flies

Shortest route
along the roads

Road names Traffic
information

What is the length of each
route?
What are the speed limits on
each route?

Identifying the steps involved in
solving a problem.

J277 - 2.1 Algorithms

J277 - 2.1 Algorithms

Identify the input, processes and outputs for a problem

An input is: Any information or data which goes into a system.

A process is: Anything which happens to information or data during a programs execution e.g. performing calculations or conversions.

An output is: Any information of data which leaves a system.

Title of program What does it do? Inputs Processes Outputs

Temperature Converter Converts the temperature
from Celsius to Fahrenheit

Temperature in Celsius (e.g.,
25 degrees)

Convert the Celsius
temperature to Fahrenheit

Temperature in Fahrenheit
(e.g., 77 degrees)

Addition Calculator Add 2 numbers together Two numbers (e.g., 5 and 3) Add the two numbers
together

The sum of the two numbers
(e.g., 8)

BMI Calculator Works out a person’s BMI Person's weight (in kg) and
height (in meters)

Calculate the Body Mass
Index (BMI) using the weight
and height

The calculated BMI value
(e.g., 23.4)

File Sorter Sorts files into alphabetical
order

List of unsorted filenames
(e.g., ["file3.txt", "file1.txt",
"file2.txt"])

Sort the filenames
alphabetically

Sorted list of filenames (e.g.,
["file1.txt", "file2.txt",
"file3.txt"])

J277 - 2.1 Algorithms

Flow diagram symbols

Start/ Stop

Process

Decision

Input/Output

Sub Routine

Line

This shape represents the start or
end of the process.

This shape represents the input
or output of data.

This shape represents something
being initialised, processed or

calculated.

This shape represents a decision
with yes or no, true or false that
results in two lines for the two

outcomes.

An arrow represents control
passing between connected

shapes.

This shape represents a
subroutine call that will relate to
a separate non-linked flow chart.

J277 - 2.1 Algorithms

Pseudocode

Pseudocode uses short English
words/statements to describe an
algorithm.

It would generally look a little more
structured than just writing English
sentences.

However it is very flexible.

It is less precise than using a
reference language, or a
programming language.

IF Age is equal to 14 THEN
Stand up

ELSE Age is equal to 15
THEN

Clap

ELSE Age is equal to 16
THEN

Sing a song

ELSE
Sit on the floor

END

J277 - 2.1 Algorithms

Exam reference language Output: print("Hello")

Input:

Selection:

num = input("Enter a number")

if num == 2 then

...

elseif num < 4 then

...

endif

FOR Loops for i = 1 to 10

...

next i

do

...

until i > 10

while (i != 11)

...

endwhile

WHILE Loops

J277 - 2.1 Algorithms

How to produce algorithms using flow diagrams

An algorithm for an RPG
game displays 3 choices from
a menu and allows the user
to enter their choice.

1. Play game
2. Change character
3. Quit

The user input is validated so
only the numbers 1-3 can be
entered.

START

END

Yes

No

Output menu choices

Input player choice

Is choice
>0 and <4

J277 - 2.1 Algorithms

Interpret, correct, refine or complete algorithms.

An algorithm for an RPG
game displays 3 choices from
a menu and allows the user
to enter their choice.

1. Play game
2. Change character
3. Quit

The user input is validated so
only the numbers 1-3 can be
entered.

do
print(“1. Play game”)
print(“2. Change character”)
print(“3. Quit”)

input(int(choice))

until choice<1 OR choice>3

J277 - 2.1 Algorithms

Identifying common errors and suggesting fixes

The error is on: average = total / len(numbers) + 1

Logical The type of error is:

In order to fix this error: Instead of calculating the correct average, the program mistakenly adds 1 to the average value.

average = total / len(numbers)

J277 - 2.1 Algorithms

Identifying common errors and suggesting fixes

The error is on: Def print_message

Syntax The type of error is:

In order to fix this error: Includes the required parentheses after the function name.

def print_message():

J277 - 2.1 Algorithms

Trace tables

In this example, the trace table represents the
input values a, b, and c, as well as the expected
result for each combination. The Python code
defines a function called calculate_result that
takes three parameters: a, b, and c.

The logic in the code checks different conditions
using if, elif, and else statements to determine
the appropriate result based on the given inputs.
The function then returns the calculated result.

The example usage section calls the
calculate_result function with different sets of
input values, and the results are stored in
result1, result2, and result3. Finally, the
program prints out the calculated results.

J277 - 2.1 Algorithms

J277 - 2.1 Algorithms

Linear search

Explanation of a linear
search:

Each item in the list is checked in order. Only works on an ordered list.

−Check the first value
−IF it is the value you are looking for

oCelebrate and stop
−ELSE move to and check the next value
−REPEAT UNTIL you have checked all the elements
and not found the value you are looking for

J277 - 2.1 Algorithms

Binary search

Explanation of a binary
search:

Calculate the mid point. Check if that is the item to find. If not, if it is lower than the midpoint,
repeat on the left half of the list, or repeat on the right half of the list.

The list needs to be in order.
Take the middle value.
Compare to the value you are looking for.
IF it is the value you are looking for.

−Celebrate, and stop.
ELSEIF it is larger than the one you are looking for.

−Take the values to the left of the middle
value.

IF it is smaller than the one you are looking for.

−Take the values to the right of the
middle value.

Repeat with the new list.

J277 - 2.1 Algorithms

Bubble sort

1. Take the first element and
second element from the
list

2. Compare them
3. IF element 1 > element 2

THEN
− Swap then

4. ELSE
− Do nothing

5. Repeat: Move along the list
to the next pair
− IF no more elements:

Goto 1
− ELSE: Goto 2
Until: you have moved
through the entire list and
not made any changes

Moving through a list repeatedly, swapping elements that are in the wrong order.

Continue until there are no more swaps.

J277 - 2.1 Algorithms

Merge sort

1. Split all elements into
individual lists.

2. Compare the first element in
both lists.

3. Put the smallest into a new
list.

4. Compare the next element of
1 list with the second element
of the 2nd list.

5. Put the smallest into a new
list.

6. Repeat until merged.

A list is split into individual lists, these are then combined (2 lists at a time).

J277 - 2.1 Algorithms

Insertion sort

1. Element 1 is a ‘sorted’ list.

2. The rest of the elements are an

‘unsorted’ list.

3. Compare the first element in the

‘unsorted’ list to each element in the

sorted list.

4. IF it is smaller, put it in in front of that

element (move the others along).

5. ELSEIF it is larger, compare with the

next.

6. ELSEIF there are no more elements in

the ‘sorted’ list put it in the final

position.

7. REPEAT UNTIL all element in the

‘unsorted’ list are in the ‘sorted’ list.

Each items is take in turn, compare to the items in a sorted list and placed in the correct position.

