- A measure of the 'compactness' of an object
- Density depends on the material and how the particles

are arranged

Dense material -> particles packed tightly together

- Less dense material -> particles more spread out
- If less dense material is compressed its particles would move closer together and it would become more dense

$$
P=M / V
$$

$\operatorname{DENSITY}\left(K G / M^{\wedge} 3\right)=\operatorname{MASS}(K G) / \operatorname{VOLUME}\left(M^{\wedge} 3\right]$

Three states of matter: - Solid

- Liquid
- Gas
- Particles in a system vibrate -> have
energy in their kinetic energy stores - Also have energy in their potential energy stores due to their positions - Energy is stored in a system by its particles

INTERNAL ENERGY

4tam tan

CHANGES OF STATE

- A change of state is a physical change, meaning you don't end up with a new substance -> it is the same substance you started with just in a different form
- If you reverse a change of state, the substance will return to its original form and get back its original properties
- The number of particles doesn't change, they are just arranged differently
- This means mass is conserved -> none is lost when the substance changes state
 which increases internal energy
- This leads to a change in temperature or state - If temperature changes, the size of this change depends on mass of substance, its specific heat capacity and energy input
- Change in state occurs if substance is heated enough the particles will have enough energy in kinetic stores to
- Strong forces of attraction hold particles close together in a fixed regular arrangement To find density of regular solid object: Particles don't have much energy so can only vibrate about their fixed positions Generally highest density
- Weaker forces of attraction so particles move past each other in irregular arrangement - Have more energy than solid so move in random directions at low speeds - Generally less dense than solids

Almost no forces of attraction
Most energy so free to move and travel in random directions at high speeds

- Generally less dense than liquids and solids Use balance to find mass
- Submerge in eureka can filled with water - Water displaced by object will be transferred to measuring cylinder
- Record volume of water in cylinder (this is volume o object) then use to work out density

density

To find density of liquid

Place measuring cylinder on balance and zero the balance
Pour 10 ml of liquid into cylinder and record mass - Pour another 10 ml into cylinder, repeating process and ecording volume and mass each time
Work out density for each measurement
Calculate average density

- The internal energy of a system is the total energy its particles have in their kinetic and potential energy stores - Heating the system transfers energy to its particles (they gain energy in kinetic stores and move faster),

PARTICLE MOWFL co matiter

 state

- Specific latent heat is different for different materials, and for changing between different states
- The specific latent heat for changing between a solid and a liquid (melting or freezing) is called the specific latent heat of fusion
- The specific latent heat for changing between a liquid and a gas (evaporating, boiling or condensing) is called the specific latent heat of vaporisation
- If a helium balloon is released, it rises ENERGY(J) = MASS(KG)X If a helium balloon is released, it rises SPECIFIC LATENT HEAT(J/KG) - Atmospheric pressure decreases with height, so the pressure outside the balloon decreases
- This causes the balloon to expand until the pressure inside

