Macronutrients — fats and proteins

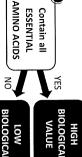
Macronutrients are needed by the body in large amounts

large biomolecules built of amino acids bound together into long chains 15% of daily

Proteins have many functions in our bodies:

tunctions

Dissolve vitamins Insulation Source of energy


Build cell membranes Build hormones

Functions Repair and maintain tissues **Build cell membranes** Secondary source of energy Defend the body (antibodies **Build enzymes and hormones**

There are approximately 20 amino acids in total and each one has a specific function in our body. While most can be made by our bodies, approximately nine cannot – these have to be consumed through food.

- Essential amino acids cannot be made by our bodies and need to come from food
- Non-essential amino acids readily made by the body

amino acids. Foods that contain them all are called high biological amino acids is called a low biological value (LBV) protein value (HBV) and a protein source that lacks one of these essential Different foods contain different amounts of these essential

meat, fish, dairy, eggs SOURCES of HBV soya, quinoa

beans, peas and lentils nuts, cereals, grains, SOURCES of LBV

> combining two LBV proteins. This is called You can obtain HBV proteins by protein complementation

Protein Complementation

protein sources to obtain an HBV protein A process of combining two or more LBV

Examples of protein complementation: baked beans + bread

peanut butter + porridge oats

What about vegetarians and vegans?

Too much or too little protein and the

following can happen:

Excess

Kidney and liver diseases

Weight gain

protein-rich plant foods. manufactured in order to provide protein in a diet, and they use protein alternative products, which are Vegetarians and vegans don't consume meat so instead Protein Alternatives

- Slowing of growth rate

Kwashiorkor

Deficiency

Examples include:

- Mycoprotein (Quorn®)
- Tempeh

Soy chunks

- proteins (TVP) Textured vegetable
- Beans, lentils, chickpeas

Excess

Coronary heart disease

Type 2 diabetes

Deficiency

Feeling cold Heart disease Vitamin deficiency Fatty liver disease

Obesity

Hypertension

large biomolecules built of one particle of glycerol and three particles of fatty acids that provide energy

Glycerol

3× fatty acids

TRIGLYCERIDE

35% of daily energy intake 1 1

The functions of fats include:

Umega

Polyunsaturated essential fatty and cold-pressed vegetable oils acids present in fish, fish oil

There are two types of fatty acid, outlined below

Saturated

Solid at room temperature Contain only single bonds

Contain one or more double bonds

Unsaturated

Liquid (oils) at room temperature

Sources

meat, cheese, butter, cream, whole milk, lard, suet, eggs

Monounsaturated

divided into two further categories: Unsaturated fats (or fatty acids) can be

One double bond

Polyunsaturated More than one double bond

Sources: fish and fish oil, vegetable oils and spreads, nuts and grains, avocados

Food can contain fat, even when you can't see it.

- often saturated Fats you can see – such as the fat on meat – are
- Unsaturated fats you cannot see such as those However, visible fats can be unsaturated (such as oils in fish and from plants)
- However, some invisible unsaturated fats can be in nuts and avocados - are often good for the

Invisible

found in processed foods

balance of them - too much fat or Fats are needed, but so is a Cholesterol

animal-origin foods, responsible for transporting fats around Fatty substance present in

too little fat has consequences.

Low-density lipoprotein (LDL) is 'bad' cholesterol

Weight loss

High-density lipoprotein (HDL) is 'good' cholesterol

Macronutrients — carbohydrates

What do we need carbohydrates for?

Functions

Store energy for later

Primary source of energy

Build DNA

'Protein sparer

CARBOHYDRATES

50% of daily energy intake

Large biomolecules built of carbon, oxygen and hydrogen, either in the form of simple, double or complex molecules built of

hundreds of molecules of sugar bonded together

carbohydrates made up of Sweet-tasting SUGARS Monosaccharides One-sugar molecules

There are three main monosaccharides found in food: Glucose – also known as blood sugar – can be found ir

- fruits and vegetables. Also found in muscles and liver
- Fructose sweet sugar found in many fruits
- Galactose a less sweet monosaccharide found in mammals' milk

There are three main disaccharides found in food:

simple or double

carbohydrates

molecules of

- Lactose products made from mammals' milk
- Sucrose common sugar

Disaccharides

Two-sugar

molecules

Maltose - produced when starch is broken down;

There are two types of carbohydrates: sugars and

known as polysaccharides

complex carbohydrates

which are further broken

down in to subgroups.

Sources of sugars

- Fruit and vegetables
- Milk and dairy products
- Sweets and condiment:
- Sugar, honey and syrups Juices and beverages

free sugar

the sugar naturally present in honey Sugar that is added to foods, and and fruit juices.

These should make up no more than 5% of your daily energy intake.

SA

Sugar that is naturally Intrinsic sugar

present in fruit and vegetables.

What happens if you eat too many or too few carbohydrates?

- Excess
 - Type 2 diabetes Tooth decay
- Weight gain and obesity
- Hyperglycaemia

Deficiency

Lack of energy, tiredness

Weight loss

- Severe weakness
- Hypoglycaemia
- Hypoglycaemia very low blood sugar level collapse/fainting, coma
- Hyperglycaemia very high blood sugar level type 2 diabetes, damage to the nerves

Pectin – found in cell walls of vegetables and fruits Cellulose - often found in plant cell walls

Sources of non-digestible polysaccharides (dietary fibre)

Swells in stomach and increases satiety

What happens if you eat too much or too little fibre?

SOLUBLE

Polysaccharides are either

digestible or non-

support digestive health

Also known as

dietary fibre

Are not absorbed and

Non-digestible

POLYSACCHARIDES

Are absorbed and provide

Digestible

Sources of digestible polysaccharides

Starch – made up of several glucose

Starchy vegetables, e.g. potatoes

Sources of starches

parsnips

Grains, e.g. wheat, rice, barley,

maize, quinoa, bread and pasta

porridge, couscous

molecules, this is found in grains, cereals and

Dextrin -produced when starchy foods

are cooked, e.g. toast or baking cakes

starchy vegetables

a source of energy

bound together. Also Long chains of sugar

known as complex

carbohydrates.

Slows down sugar ingestion and prevents high blood sugar levels

Adds bulk to the stool INSOLUBLE

Dietary fibre can either be soluble or insoluble

Regulates bowe

Prevents bowel

Sources of dietary fibre:

vegetables, fruit, nuts, wholemeal products, lentils and beans bran, oatmeal

Excess

Impaired absorption of nutrients Constipation or diarrhoea

- Deficiency Increased risk of obesity, type 2 Constipation or diarrhoea diabetes, cardiovascular disease, bowel cancer