
J277 - 2.5 Programming languages and IDEs

J277 - 2.5 Programming languages and IDEs

Characteristics and purpose of different levels of programming language

Example language: Python Assembly

Purpose:
Makes writing of computer programs easier by using
commands that are similar to English language.

Used for embedded systems and device drivers where
instructing the hardware directly is necessary.

Characteristic 1
Instructions to machine
code:

One instruction translates to many machine code
instructions.

One instruction translates to one machine code
instruction.

Characteristic 2
Types of processors:

Code will run on different processors. The code will work on one type of processor.

Characteristic 3
Data structures:

The programmer has lots of data structures to use. The programmer works with the memory directly.

Characteristic 4
Ease of coding:

Code is quicker and easier to understand and write. Code is much harder to understand and write.

Characteristic 5
Memory efficiency:

Less memory efficient. More memory efficient.

Characteristic 6
Speed of execution:

Code is slower to execute. Code is faster to execute.

High level language Low level language

J277 - 2.5 Programming languages and IDEs

Characteristics and purpose of different levels of programming language – LOW LEVEL LANGUAGE

J277 - 2.5 Programming languages and IDEs

Characteristics and purpose of different levels of programming language – HIGH LEVEL LANGUAGE

J277 - 2.5 Programming languages and IDEs

What is the relationship between machine code and assembly language?

Machine code :
Machine code is the set of instructions that a CPU understands directly and can act upon. A program written in
machine code would consist of only 0s and 1s - binary.

High-level languages

Assembly Languages

Machine code

Hardware

• Assembly languages are written by programmers in
assembly code.

• It is often used to develop software for embedded
systems and controlling specific hardware components.

• They first have to be translated by an assembler into
machine code before being run.

• Once run the actual CPU executes the machine code.
• Machine code is specific to each type of processor.
• The relationship between assembly code and machine

code is one-to-one.
• This means that one line of assembly code translates into

one specific line of binary machine code.

Low-level language :
Low-level languages are languages that sit close to the computer's instruction set. An instruction set is the set of
instructions that the processor understands.
Two types of low-level language are: Machine code & Assembly language.

The difference between machine code and assembly
languages: Hierarchy of languages:

J277 - 2.5 Programming languages and IDEs

The purpose of translators

Translators are needed to translate programs written in high level languages into the machine
code that a computer understands. Tools exist to help programmers develop error-free code.

J277 - 2.5 Programming languages and IDEs

The characteristics of a compiler and an interpreter

Compiler Interpreter

Description:
Translates source code from a high level
language into object code and then into

machine code to be processed by the CPU.

Translates source code from a high level
language into machine code to be processed by

the CPU.

Feature:
The whole program is translated to machine

code before it is run.
The program is translated line by line as the

program is running.

Ease of writing code:
Easier to write code as it is close to English
language, but the program will not run with

syntax errors in the code.

Easy to write code as it is close to English
language. The program will run and stop when it

finds a syntax error.

Impact of changing code: Needs to be recompiled.
Does not need be recompiled and it is easy to

try out commands.

Designed for a specific type of
processor:

Yes No

Need for translation software at run-
time:

No Yes

Speed of code execution: Quick Slow

Optimised code: Yes No

Source code is kept secret: Yes No

J277 - 2.5 Programming languages and IDEs

J277 - 2.5 Programming languages and IDEs

Common tools and facilities available in an integrated development environment (IDE)

Writing large programs can be a complex task. To help the programmer write clear, maintainable
code, various tools exist.

Feature Description

Text editor Allows you to add and edit code as well
as to insert comments.

Runtime
environment

Runs your program by converting your
source code into machine code in order
for it to be executed by the CPU.

Syntax checking Checks for any potential syntax errors in
line with the rules of the language you
are writing in. This helps to avoid
common syntax errors appearing at the
point when code is executed.

Keyword
highlighting

Colour codes command words,
variables, and data types to make your
code more readable and easier to
debug.

Feature Description

Debugging tools Tools that help you to detect and locate errors
so you can fix them.

Break point A debugging tool that enables you to stop the
program execution at a specific point to enable
you to see the values of the variables. Some
IDEs also allow you to step through the code
line by line to trace the values of the variables.

Memory inspector Displays the contents of memory so that you
can see how it is being used by the program in
order to help debug problems such as memory
leak.

Threading Debugging tool that allows you to see the
threads currently running. The inspector allows
you to suspend, resume, and see the status of
each thread being executed by your program.

