J277-1.2 Memory \& Storage

1.2 - Memory and storage

Sub topic

Guidance

1.2.1 Primary storage (Memory)

\square The need for primary storage
\square The difference between RAM and ROM
$\square \quad$ The purpose of ROM in a computer system
$\square \quad$ The purpose of RAM in a computer system
$\square \quad$ Virtual memory

Required

$\checkmark \quad$ Why computers have primary storage

- How this usually consists of RAM and ROM
$\checkmark \quad$ Key characteristics of RAM and ROM
$\checkmark \quad$ Why virtual memory may be needed in a system
$\checkmark \quad$ How virtual memory works
- Transfer of data between RAM and HDD when RAM is filled

1.2.2 Secondary storage

$\square \quad$ The need for secondary storage
\square Common types of storage:

- Optical
- Magnetic
- Solid state
$\square \quad$ Suitable storage devices and storage media for a given application
$\square \quad$ The advantages and disadvantages of different storage devices and storage media relating to these characteristics:
- Capacity
- Speed
- Portability
- Durability
- Reliability
- Cost

Required

$\checkmark \quad$ Why computers have secondary storage
\checkmark Recognise a range of secondary storage devices/media
\checkmark Differences between each type of storage device/medium
\checkmark Compare advantages/disadvantages for each storage device
$\checkmark \quad$ Be able to apply their knowledge in context within scenarios

Not required

$\boldsymbol{x} \quad$ Understanding of the component parts of these types of storage

J277-1.2 Memory \& Storage

Random Access Memory (RAM)

Name

Random Access Memory.

Purpose

A temporary store of instructions and data in use by the CPU for currently executing programs. Programs and data are loaded from the hard disk/solid state storage to RAM for processing.

Volite memory.

Can be read and written to.
Programs and files are copied here from
secondary storage while in use.

Slower than the CPU Cache, but faster than secondary storage.

J277-1.2 Memory \& Storage

Read Only Memory (ROM)

Name

Read Only Memory.

Purpose

Holds the first instructions to execute when the computer is first turned on. Also known as the 'BIOS'.

Non-Volite memory.
\square Can only be read from, not written to.

Programs and files are copied here from secondary storage while in use.

Contains BIOS (Basic Input Output System) instructions needed for the computer to boot up.

J277-1.2 Memory \& Storage

Virtual Memory

Name

Virtual Memory.

Purpose

This is where part of the hard disk as if it is memory for programs that are running, when the RAM is full.

Issue

Computer instructions can only be executed from the cache and RAM. As a result, they must be transported back from virtual memory before they can be used. This makes the computer slower as it has to continually move instructions to the RAM from the virtual memory.

J277-1.2 Memory \& Storage

1.2 - Memory and storage

Sub topic

1.2.1 Primary storage (Memory)

$\square \quad$ The need for primary storage

- The difference between RAM and ROM
$\square \quad$ The purpose of ROM in a computer system
$\square \quad$ The purpose of RAM in a computer system
- Virtual memory

Guidance

Required

$\checkmark \quad$ Why computers have primary storage

- How this usually consists of RAM and ROM
$\checkmark \quad$ Key characteristics of RAM and ROM
$\checkmark \quad$ Why virtual memory may be needed in a system
$\checkmark \quad$ How virtual memory works
- Transfer of data between RAM and HDD when RAM is filled

1.2.2 Secondary storage

\square The need for secondary storage
\square Common types of storage:

- Optical
- Magnetic
- Solid state
$\square \quad$ Suitable storage devices and storage media for a given application
$\square \quad$ The advantages and disadvantages of different storage devices and storage media relating to these characteristics:
- Capacity
- Speed
- Portability
- Durability
- Reliability
- Cost

Required

$\checkmark \quad$ Why computers have secondary storage
$\checkmark \quad$ Recognise a range of secondary storage devices/media
\checkmark Differences between each type of storage device/medium
\checkmark Compare advantages/disadvantages for each storage device
$\checkmark \quad$ Be able to apply their knowledge in context within scenarios

Not required

$\boldsymbol{x} \quad$ Understanding of the component parts of these types of storage

J277-1.2 Memory \& Storage

The need for secondary storage

Because main memory (RAM) is volatile, any data or programs currently being stored there will disappear once the power is lost i.e. the computer is switched off.

So secondary storage is used to retain a copy of programs and data that need to be kept long term.

Two types of Internal Storage

1. Hard Disk Drives (HDDs)

- Has moving parts.
- Stores data magnetically on metal disks.
- Can be noisy.

2. Solid State Drives (SSDs)

- No moving parts.
- Uses flash memory for faster read/write times.
- Usually quiet/silent.

Four types of External Storage

1. Flash drives \& Memory cards

Solid state storage used to expand the capacity of small devices.
2. Optical Discs

Eg. CDs. Can be read-only, write-once or rewritable.

3. Magnetic tape

Used by organisations to store huge amounts of data.
4. External HDDs \& SSDs

Portable versions of internal storage. Often used for back ups.

J277-1.2 Memory \& Storage

Comparing Storage Types - Characteristics

Optical	Memory card	Sisc

Comparing Storage Types - Characteristics

	Internal HDD	Internal SSD	Memory card	Optical Disc	Magnetic tape
Portability	Low	Low	High	High	High
Durability and Reliability	- Damaged by impacts. - Long read/write life.	-Shock resistant. - Limited rewrites.	- Shock resistant. - Limited rewrites.	-Easily scratched. -Limited rewrites. - Suitable long term storage.	- Damaged by impacts, heat and magnets. -Suitable long term storage.

J277-1.2 Memory \& Storage

Cloud storage

What is Cloud storage?

Storing programs and data on remote hard drives, accessed over the internet when needed.

Advantages of cloud storage

Disadvantages of cloud storage

1. Space is not taken up on local drives meaning more space is available overall.
2. Files can be accessed anywhere, from any device connected to the internet.
3. Backup and version history of files is usually kept automatically.
4. Collaboration on files is easy.
5. High quality images can be kept on remote servers, with lower quality images available on low storage devices.
6. Monthly/annual cost.
7. Potential security risks.
8. Relying on a third party to look after your data.
9. Incompatibility between storage and applications.

J277-1.2 Memory \& Storage

Sub topic

Guidance

1.2.3 Units

\square The units of data storage:
Bit

- Nibble (4 bits)
- Byte (8 bits)
- Kilobyte (1,000 bytes or 1 KB)
- Megabyte $(1,000 \mathrm{~KB})$
- Gigabyte ($1,000 \mathrm{MB}$)
- Terabyte ($1,000 \mathrm{~GB}$)
- Petabyte (1,000 TB)
- How data needs to be converted into a binary format to be processed by a computer
- Data capacity and calculation of data capacity requirements

Required

\checkmark Why data must be stored in binary format
$\checkmark \quad$ Familiarity with data units and moving between each
$\checkmark \quad$ Calculate capacity of devices
$\checkmark \quad$ Calculate required capacity for a given set of files
$\checkmark \quad$ Calculate file sizes of sound, images and text files

- sound file size $=$ sample rate x duration (s) \times bit depth
- image file size $=$ colour depth x image height $(\mathrm{px}) \mathrm{x}$ image width (px)
- text file size $=$ bits per character x number of characters

Alternatives

- Use of 1,024 for conversions and calculations would be acceptable
- Allowance for metadata in calculations may be used

1.2.4 Data storage

Numbers

$\square \quad$ How to convert positive denary whole numbers to binary numbers (up to and including 8 bits) and vice versa
$\square \quad$ How to add two binary integers together (up to and including 8 bits) and explain overflow errors which may occur
$\square \quad$ How to convert positive denary whole numbers into 2-digit hexadecimal numbers and vice versa
$\square \quad$ How to convert binary integers to their hexadecimal equivalents and vice versa
$\square \quad$ Binary shifts

Required

\checkmark Denary number range 0-255
$\checkmark \quad$ Hexadecimal range $00-\mathrm{FF}$
$\checkmark \quad$ Binary number range 00000000-11111111
$\checkmark \quad$ Understanding of the terms most significant bit, and least significant bit
$\checkmark \quad$ Conversion of any number in these ranges to another number base
$\checkmark \quad$ Ability to deal with binary numbers containing between 1 and 8 bits

- e.g. 11010 is the same as 00011010
$\checkmark \quad$ Understand the effect of a binary shift (both left or right) on a number

J277-1.2 Memory \& Storage

Bit, nibble, byte, kilobyte \& megabyte

Explain how binary data is used to represent numbers in a computer.

Traditionally, each unit is defined to be 1024 times bigger than the previous one!

- Computers can only store and process binary data.
- They use 1 s and 0 s to represent the flow of electricity - A 1 shows that electricity is flowing and 0 shows that it isn't.
- Each 1 or 0 in binary data is a bit (binary digit).

Name	Size
Bit	A single binary digit (0 or 1)
Nibble	4 bits
Byte (B)	8 bits
Kilobyte (KB)	1000 bytes
Megabyte (MB)	1000 kilobytes
Gigabyte (GB)	1000 megabytes
Terabyte (TB)	1000 gigabytes
Petabyte (PB)	1000 terabytes

J277-1.2 Memory \& Storage

Units of data storage

Unit conversions:

Q1. Jenny has 700 high resolution 10 Mb photographs.
What size memory card in $G B$ will she need as a minimum to store these images?

Q2. An SD card stores films in a compressed format. Each film is 6.7GB. How many films can a 64GB card store?

Q3. A CCTV system records video at 180MB per second. How much storage is required in GB for 90 second of footage?

J277-1.2 Memory \& Storage

Sub topic

1.2.3 Units

\square The units of data storage:

- Bit
- Nibble (4 bits)
- Byte (8 bits)
- Kilobyte (1,000 bytes or 1 KB)
- Megabyte $(1,000 \mathrm{~KB})$
- Gigabyte ($1,000 \mathrm{MB}$)
- Terabyte ($1,000 \mathrm{~GB}$)
- Petabyte (1,000 TB)
\square How data needs to be converted into a binary format to be processed by a computer
$\square \quad$ Data capacity and calculation of data capacity requirements

Guidance

Required

$\checkmark \quad$ Why data must be stored in binary format
$\checkmark \quad$ Familiarity with data units and moving between each
$\checkmark \quad$ Calculate capacity of devices
$\checkmark \quad$ Calculate required capacity for a given set of files
$\checkmark \quad$ Calculate file sizes of sound, images and text files

- sound file size $=$ sample rate x duration (s) \times bit depth
- image file size $=$ colour depth x image height $(p x) x$ image width (px)
- text file size = bits per character x number of characters

Alternatives

- Use of 1,024 for conversions and calculations would be acceptable
- Allowance for metadata in calculations may be used

1.2.4 Data storage

Numbers

$\square \quad$ How to convert positive denary whole numbers to binary numbers (up to and including 8 bits) and vice versa
$\square \quad$ How to add two binary integers together (up to and including 8 bits) and explain overflow errors which may occur

- How to convert positive denary whole numbers into 2-digit hexadecimal numbers and vice versa
\square How to convert binary integers to their hexadecimal equivalents and vice versa
$\square \quad$ Binary shifts

Required

\checkmark Denary number range 0-255
$\checkmark \quad$ Hexadecimal range $00-\mathrm{FF}$
$\checkmark \quad$ Binary number range 00000000-11111111
$\checkmark \quad$ Understanding of the terms most significant bit, and least significant bit
$\checkmark \quad$ Conversion of any number in these ranges to another number base
$\checkmark \quad$ Ability to deal with binary numbers containing between 1 and 8 bits

- e.g. 11010 is the same as 00011010
$\checkmark \quad$ Understand the effect of a binary shift (both left or right) on a number

J277-1.2 Memory \& Storage

How to convert positive denary whole numbers ($0-255$) into 8 bit binary numbers

Converting 183 into Binary involves the following steps:

- 1. Does 128 go into 183 ? Yes so put a 1 Under 128. This leaves 55.
- 2. Does 64 go into 55 ? No so put a 0 under 64 . This leaves 55 still.
- 3. Does 32 go into 55 ? Yes so put a 1 under 32 . The leaves 23 .
- 4. Does 16 go into 23 ?. Yes so put a 1 under 16 . This leaves 7 .
- 5. Does 8 go into 7 ? No so put a 0 under 8 . This still leaves 7 .
- 6. Does 4 go into 7 ? Yes so put a 1 under 4. This leaves 3.
- 7. Does 2 go into 3? Yes so put a 1 under 2. This leaves 1.
- 8. Does 1 go into 1 ? Yes so put a 1 under 1 .

Convert these denary numbers into their $\mathbf{8}$ bit binary equivalent:

Adding two 8 bit binary integers and overflow errors.

Examples

1. $00000101+00000110=00001011$
2. $00001110+00000101=00010011$
3. $00001001+00000011=00001100$
4. $00000111+00001011=00010010$
5. $00011011+00001010=00100001$

Overflow errors can occur when adding binary numbers because:

There are not enough bits to hold the answer and a carry remains that cannot be stored.

How to convert 8 bit binary numbers to positive denary whole numbers

The binary number 10110111 can be converted to Denary as:

$\mathbf{2}^{7}$	$\mathbf{2}^{6}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{4}$	$\mathbf{2}^{3}$	$\mathbf{2}^{2}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
128	64	32	16	8	4	2	1
1	0	1	1	0	1	1	1

If a ' 1 ' is present in that column, then you need to add that number to the others...

This means you get: $128+0+\beta 2+16+q+4+2+1=883$

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
1	0	1	1	0	1	1	1

Convert these binary numbers into their denary equivalent:

1. $00000000=0$
2. $00000001=1$
3. $00001111=15$
4. $00010010=18$
5. $00101000=40$
6. $01010101=85$
7. $10000000=128$
8. $11001100=204$
9. $11100011=227$
10. $11111111=255$

How to convert from binary to hexadecimal equivalents and vice versa.

To convert 4C from Hexadecimal into base 10:

STEP 1 - split the Hex up and find the binary representation:

4	C
0100	1100

STEP 2 - Put the binary number together, then convert to denary:

128	64	32	16	8	4	2	1
0	1	0	0	1	1	0	0

$01001100=64+8+4=\underline{76}$

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

How to convert from hexadecimal to binary and vice versa.
We can convert from to Hexadecimal by using the following method:
e.g. Convert 167 into Hexadecimal

STEP 1 - Convert the number into binary:

128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	1

STEP 2 - Split the binary number into two nibbles:
10100111

STEP 3 - Convert the two nibbles to Hex:
$1010=\mathrm{A} 0111=7$

Therefore the answer is = A7

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

J277-1.2 Memory \& Storage

Binary shifts

J277-1.2 Memory \& Storage

Sub topic

Characters

- The use of binary codes to represent characters
- The term 'character set'
- The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.:
- ASCII
- Unicode

Images

- how antmage is tepiesented as a sentes or piseis, repiesenteant

binary

- Metadata
- The effect of colour depth and resolution on:
- The quality of the image
- The size of an image file

Sound

- How sound can be sampled and stored in digital form
\square The effect of sample rate, duration and bit depth on:
- The playback quality
- The size of a sound file

Guidance

Required

\checkmark How characters are represented in binary
\checkmark How the number of characters stored is limited by the bits available
$\checkmark \quad$ The differences between and impact of each character set
$\checkmark \quad$ Understand how character sets are logically ordered, e.g. the code for ' B ' will be one more than the code for ' A '
$\checkmark \quad$ Binary representation of ASCII in the exam will use 8 bits
Not required

* Memorisation of character set codes

Required

\checkmark Each pixel has a specific colour, represented by a specific code
$\checkmark \quad$ The effect on image size and quality when changing colour depth and resolution
$\checkmark \quad$ Metadata stores additional image information (e.g. height, width, etc.)

Required

\checkmark Analogue sounds must be stored in binary
$\checkmark \quad$ Sample rate - measured in Hertz (Hz)
\checkmark Duration - how many seconds of audio the sound file contains
$\checkmark \quad$ Bit depth - number of bits available to store each sample (e.g. 16-bit)

1.2.5 Compression

- The need for compression
\square Types of compression:
- Lossy
- Lossless

Required

\checkmark Common scenarios where compression may be needed
$\checkmark \quad$ Advantages and disadvantages of each type of compression
$\checkmark \quad$ Effects on the file for each type of compression

Not required

* Ability to carry out specific compression algorithms

J277-1.2 Memory \& Storage

The use of binary codes to represent characters

Characters

These are uppercase and lowercase letters, the digits 0-9 and symbols like ?, + and $£$.

Character Sets

These are collections if characters that a computer recognises from their binary representation, used to convert characters to binary code and vice versa.

Two important character sets

ASCII

- Each character is given a 7-bit binary code - so ASCII can represent 128 different characters.
- An extra bit (0) is added to the start of each binary code so each character uses 1 byte.
- The codes for numbers and letters are ordered (A comes before B before C...).

UNICODE

- Covers all major language, including ones that use different alphabets, like Greek, Russian and Chinese.
- Uses multiple bytes for each character.
- The first 128 characters in Unicode are the same as ASCII.

Character	Binary	Denary
A	01000001	65
B	01000010	66
C	01000011	67
a	01100001	97
b	01000010	98
c	01100011	99

J277-1.2 Memory \& Storage

Text File Sizes

Use this formula to calculate file size:

File size (in bits)
= number of bits per character *
number of characters

Example

How many bits would be needed to store "I'm a string, store me!" in 8 bit ASCII?
\#Count the characters

How many bits would be needed to store "My phone number is 07584 587458!" in 8 bit ASCII? Write your answer in Bytes.
\#Count the characters
32
\#Use the formula
File size $=8 \times 32=32$ bytes .

J277-1.2 Memory \& Storage

Sub topic

Characters

- The use of binary codes to represent characters
$\square \quad$ The term 'character set'
$\square \quad$ The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.:
- ASCII
- Unicode

Images

$\square \quad$ How an image is represented as a series of pixels, represented in binary
$\square \quad$ Metadata
\square The effect of colour depth and resolution on:

- The quality of the image
- The size of an image file

Guidance

Required

$\checkmark \quad$ How characters are represented in binary
$\checkmark \quad$ How the number of characters stored is limited by the bits available
$\checkmark \quad$ The differences between and impact of each character set
$\checkmark \quad$ Understand how character sets are logically ordered, e.g. the code for ' B ' will be one more than the code for ' A '
$\checkmark \quad$ Binary representation of ASCII in the exam will use 8 bits
$\times \quad$ Memorisation of character set codes

Required

$\checkmark \quad$ Each pixel has a specific colour, represented by a specific code
$\checkmark \quad$ The effect on image size and quality when changing colour depth and resolution
$\checkmark \quad$ Metadata stores additional image information (e.g. height, width, etc.)

Required

$\checkmark \quad$ Analogue sounds must be stored in binary
$\checkmark \quad$ Sample rate - measured in Hertz (Hz)
$\checkmark \quad$ Duration - how many seconds of audio the sound file contains
$\checkmark \quad$ Bit depth - number of bits available to store each sample (e.g. 16-bit)

1.2.5 Compression

$\square \quad$ The need for compression
\square Types of compression:

- Lossy
- Lossless

Required

$\checkmark \quad$ Common scenarios where compression may be needed
$\checkmark \quad$ Advantages and disadvantages of each type of compression
$\checkmark \quad$ Effects on the file for each type of compression

Not required

* Ability to carry out specific compression algorithms

J277-1.2 Memory \& Storage

The use of binary codes to represent characters

Bitmap

A type of image made up from lots of tiny dots, called pixels.
The colour of each pixel is stored using binary code.

Image resolution

The number of pixels in a bitmap image. Often given as 'width x height.'

Metadata

Data stored in a file which contains information ab out the file. Helps the computer to recreate the image on screen from the binary data in each pixel.

Examples of Metadata include:

- Height and Width
- Colour depth
- Resolution
- File format
- Data created
- Date last edited

Colour Depth

The number of bits used to represent each pixel. The number of colours that can be used for a given colour depth follows this formula:

2^{n}

$$
\text { (where } \mathrm{n}=\text { colour depth) }
$$

Example

Colour depth $=2$ bits

- Number of colours $=2^{\mathbf{2}}=4$
- In this example: $00=$ white, 01 = light grey, 10 dark grey \& 11 = black.

11	01	10	00
01	10	00	10
10	00	10	01
00	10	01	11

J277-1.2 Memory \& Storage

Image File Sizes

Use this formula to calculate file size:

File size (in bits)

= image resolution x colour depth
$=$ width x height x colour depth

Increasing the image resolution or colour depth will usually give a high quality image, but larger file size.

Example
Example

Calculate the size in MB of a 750 pixels (width) \times 900 pixels (height) with a colour depth of 32 bits.
\#Calculating the size
File size $=750 \times 900 \times 32$

$$
=21,600,000 \mathrm{bits}
$$

\#Calculating in GB
21,600,000 bits
$=21,600,000$ bits $/ 8=$
2,700,000 bytes
= 2,700,000 / $1000=$
2,700 KB
$2,700 K B / 1000=$ 27 MB

J277-1.2 Memory \& Storage

Sub topic

Characters

The use of binary codes to represent characters
$\square \quad$ The term 'character set'
$\square \quad$ The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.:

- ASCII
- Unicode

Images

$\square \quad$ How an image is represented as a series of pixels, represented in binary
\square Metadata
\square The effect of colour depth and resolution on:

- The quality of the image
- The size of an image file

Guidance

Required

$\checkmark \quad$ How characters are represented in binary
$\checkmark \quad$ How the number of characters stored is limited by the bits available
$\checkmark \quad$ The differences between and impact of each character set
$\checkmark \quad$ Understand how character sets are logically ordered, e.g. the code for ' B ' will be one more than the code for ' A '
$\checkmark \quad$ Binary representation of ASCII in the exam will use 8 bits

Not required

* Memorisation of character set codes

Required

$\checkmark \quad$ Each pixel has a specific colour, represented by a specific code
$\checkmark \quad$ The effect on image size and quality when changing colour depth and resolution
$\checkmark \quad$ Metadata stores additional image information (e.g. height, width,

Sound

\square How sound can be sampled and stored in digital form
\square The effect of sample rate, duration and bit depth on:

- The playback quality
- The size of a sound file

Required

$\checkmark \quad$ Analogue sounds must be stored in binary
$\checkmark \quad$ Sample rate - measured in Hertz (Hz)
$\checkmark \quad$ Duration - how many seconds of audio the sound file contains
$\checkmark \quad$ Bit depth - number of bits available to store each sample
(e.g. 16-bit)

1.2.5 Compression

- The need for compression

Required

$\checkmark \quad$ Common scenarios where compression may be needed
$\checkmark \quad$ Advantages and disadvantages of each type of compression
$\checkmark \quad$ Effects on the file for each type of compression

Not required

* Ability to carry out specific compression algorithms

J277-1.2 Memory \& Storage

Sampling

Key definitions

We hear sound as 'analogue' - tones and rhythms
Sample frequency - The number of audio samples captured every second. Measured in Hertz (Hz)
If sound has to be handled by the computer - needs
Sampling- Converting analogue sound wave into digital

to be converted to binary.
'Digitalise' using an input device.
Bit depth - Number of bits available for each sample.

Sound Sampling process

Typical sound wave

The height of the wave is measured (sampled) at regular intervals. This is then turned into binary and stored.

J277-1.2 Memory \& Storage

Sound File Sizes

Use this formula to calculate file size:

File size (in bits)

$=$ Sample rate (in Hz) \mathbf{x} bit depth \mathbf{x} length (in Secs)

A higher sample rate or bit depth will give a higher quality sound file, but will increase the file size.

Calculate the file size in MB for an audio quality recording with a 16-bit depth, sample rate of $44,100 \mathrm{~Hz}$ (samples per second) and duration of 3 minutes.
\#Calculating the size
File size $=16 \times 44,100 \times 180$
= 127,008,000

bits

\#Calculating in MB
127,008,000 bits
= 127,008,000 / $8=$
15,876,000 bytes
= 15,876,000 / 1000 =
15,876 KB
15,876 / $1000=$ 15.876 MB

Calculate the file size in MB for an audio quality recording with a 24-bit depth, sample rate of 48 kHz (samples per second) and duration of 5 minutes.
\#Calculating the size
File size $=48 \mathrm{kHz}=48,000$
Hz

$$
=5 \mathrm{mins}=300
$$

secs

$$
24 \times 48,000 \times 300
$$

$$
=345,600,000
$$

bits
\#Calculating in MB
= 345,600,000 / 8 =
43,200,000 bytes
= 43,200,000 / 1000 = 43,200 KB
43,200KB / $1000=$
43.2 MB

J277-1.2 Memory \& Storage

The effect of doubling the bit rate on the quality of the sound and file size

J277-1.2 Memory \& Storage

Sub topic

Characters

$\square \quad$ The use of binary codes to represent characters
$\square \quad$ The term 'character set'
$\square \quad$ The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.:

- ASCII
- Unicode

Images

$\square \quad$ How an image is represented as a series of pixels, represented in binary
\square Metadata
\square The effect of colour depth and resolution on:

- The quality of the image
- The size of an image file

Sound

\square How sound can be sampled and stored in digital form
\square The effect of sample rate, duration and bit depth on:

- The playback quality
- The size of a sound file

Guidance

Required

$\checkmark \quad$ How characters are represented in binary
$\checkmark \quad$ How the number of characters stored is limited by the bits available
$\checkmark \quad$ The differences between and impact of each character set
$\checkmark \quad$ Understand how character sets are logically ordered, e.g. the code for ' B ' will be one more than the code for ' A '
$\checkmark \quad$ Binary representation of ASCII in the exam will use 8 bits

Not required

* Memorisation of character set codes

Required

$\checkmark \quad$ Each pixel has a specific colour, represented by a specific code
$\checkmark \quad$ The effect on image size and quality when changing colour depth and resolution
$\checkmark \quad$ Metadata stores additional image information (e.g. height, width, etc.)

Required

$\checkmark \quad$ Analogue sounds must be stored in binary
$\checkmark \quad$ Sample rate - measured in Hertz (Hz)
$\checkmark \quad$ Duration - how many seconds of audio the sound file contains
$\checkmark \quad$ Bit depth - number of bits available to store each sample (e. 16-hit)

1.2.5 Compression

The need for compression
\square Types of compression:

- Lossy
- Lossless

Required

$\checkmark \quad$ Common scenarios where compression may be needed
$\checkmark \quad$ Advantages and disadvantages of each type of compression
$\checkmark \quad$ Effects on the file for each type of compression

Not required

* \quad Ability to carry out specific compression algorithms

J277-1.2 Memory \& Storage

Data Compression

What is Data Compression?

Making file sizes smaller, whilst trying to stay as true to the original as possible.

Less storage space used.

Streaming/Downloading compressed files takes less bandwidth.

Some services (eg. Email) have file size limits, compression can get below limits.

Pros

Lossy Permanently removes data from the file.	- Small file sizes. - Ideal for web use due to file size. - Commonly used - Lots of software and read lossy files.	- Looses data - Can't be reversed to the original. - Quality degrades. - Can't be used on text / software.
Lossless Temporarily removes data to store the file and restores it to the original state when opened.	- No loss in quality. - File can be turned back to the original. - Can be used of text / software.	- Larger than lossy files.

J277-1.2 Memory \& Storage

Units of data storage

Case study:
Elizabeth is looking to upgrade her phone. She is choosing between model A and model B.

	Model A	Model B
Storage capacity	64 GB	256 GB
Camera	8 mega-pixel, 24 bit colour	12 mega-pixel, 24 bit colour
Video	$1080 \mathrm{p}(2$ mega-pixel) at $24 \mathrm{fps}, 30 \mathrm{fps}$, or 60 fps	$4 \mathrm{~K} \mathrm{HD}(8$ mega-pixel $)$ at $24 \mathrm{fps}, 30 \mathrm{fps}$, or 60 fps

Consider that 32GB of data storage will be used for apps. Assume 50% compression.

Maximum number of photographs that could be stored on the phone:
 $\times 24$ bit $=192,000,000$ bits.
Divide by 8 for bytes =
$24,000,000$ bytes or 24 MB
Per photograph.
32,000 (32GB) divided by $24=$
1,333 uncompressed photos.
$\times 2$ due to 50% compression $=$
2,666 photos.

12,000,000 bit resolution. X 24 bit $=288.000 .000$ bits.
Divide by 8 for bytes $=$
$36,000,000$ bytes or 36 MB
Per photograph.
224,000 (224 GB) divided by $36=$ 6,222 uncompressed photos.
$\times 2$ due to 50% compression $=$
12,444 photos.

