

1.2 – Memory and storage

Sub	opic	Guidance
1.2.1	Primary storage (Memory)	
	The need for primary storage The difference between RAM and ROM The purpose of ROM in a computer system The purpose of RAM in a computer system Virtual memory	 Required ✓ Why computers have primary storage How this usually consists of RAM and ROM ✓ Key characteristics of RAM and ROM ✓ Why virtual memory may be needed in a system ✓ How virtual memory works Transfer of data between RAM and HDD when RAM is filled
1.2.2	Secondary storage	
	The need for secondary storage Common types of storage: • Optical • Magnetic • Solid state	Required ✓ Why computers have secondary storage ✓ Recognise a range of secondary storage devices/media ✓ Differences between each type of storage device/medium ✓ Compare advantages/disadvantages for each storage device ✓ Be able to apply their knowledge in context within scenarios
	Suitable storage devices and storage media for a given application The advantages and disadvantages of different storage devices and storage media relating to these characteristics: • Capacity • Speed • Portability • Durability • Reliability	 Not required * Understanding of the component parts of these types of storage

Random Access Memory (RAM)

Name

Random Access Memory.

Purpose

A temporary store of instructions and data in use by the CPU for currently executing programs. Programs and data are loaded from the hard disk/solid state storage to RAM for processing.

Volite memory.

Can be read and written to.

Programs and files are copied here from secondary storage while in use.

Slower than the CPU Cache, but faster than secondary storage.

Name

Read Only Memory.

Purpose

Holds the first instructions to execute when the computer is first turned on. Also known as the 'BIOS'.

Non-Volite memory.

Can only be read from, not written to.

Programs and files are copied here from secondary storage while in use.

1.2	2 – Memory and storage							
Sub	topic	Guidance						
1.2.1	1 Primary storage (Memory)							
	The need for primary storage The difference between RAM and ROM The purpose of ROM in a computer system The purpose of RAM in a computer system Virtual memory	 Required ✓ Why computers have primary storage How this usually consists of RAM and ROM ✓ Key characteristics of RAM and ROM ✓ Why virtual memory may be needed in a system ✓ How virtual memory works Transfer of data between RAM and HDD when RAM is filled 						
1.2.3 □	2 Secondary storage The need for secondary storage Common types of storage:	Required ✓ Why computers have secondary storage ✓ Recognise a range of secondary storage devices/media						
	 Magnetic Solid state 	 Compare advantages/disadvantages for each storage device Be able to apply their knowledge in context within scenarios 						
	Suitable storage devices and storage media for a given application The advantages and disadvantages of different storage devices and storage media relating to these characteristics:	Not required						
	 Capacity Speed Portability Durability Reliability Cost 							

The need for secondary storage

Because main memory (RAM) is volatile, any data or programs currently being stored there will disappear once the power is lost i.e. the computer is switched off.

So secondary storage is used to retain a copy of programs and data that need to be kept long term.

Comparing Storage Types – Characteristics

Comparing Storage Types – Characteristics

	Internal HDD	Internal SSD	Memory card	Optical Disc	Magnetic tape
Portability	Low	Low	High	High	High
Durability and Reliability	 Damaged by impacts. Long read/write life. 	 Shock resistant. Limited rewrites. 	 Shock resistant. Limited rewrites. 	 Easily scratched. Limited rewrites. Suitable long term storage. 	 Damaged by impacts, heat and magnets. Suitable long term storage.

Cloud storage

What is Cloud storage?

Storing programs and data on remote hard drives, accessed over the internet when needed.

Advantages of cloud storage

- 1. Space is not taken up on local drives meaning more space is available overall.
- 2. Files can be accessed anywhere, from any device connected to the internet.
- 3. Backup and version history of files is usually kept automatically.
- 4. Collaboration on files is easy.
- 5. High quality images can be kept on remote servers, with lower quality images available on low storage devices.

Disadvantages of cloud storage

- 1. Monthly/annual cost.
- 2. Potential security risks.
- 3. Relying on a third party to look after your data.
- 4. Incompatibility between storage and applications.

Sub	topic	Guidance			
1.2.3	 3 Units The units of data storage: Bit Nibble (4 bits) Byte (8 bits) 	Required ✓ Why data must be stored in binary format ✓ Familiarity with data units and moving between each ✓ Calculate capacity of devices			
	 Kilobyte (1,000 bytes or 1 KB) Megabyte (1,000 KB) Gigabyte (1,000 MB) Terabyte (1,000 GB) Petabyte (1,000 TB) 	 ✓ Calculate required capacity for a given set of files ✓ Calculate file sizes of sound, images and text files sound file size = sample rate x duration (s) x bit depth image file size = colour depth x image height (px) x image width (px) text file size = bits per character x number of characters 			
	How data needs to be converted into a binary format to be processed by a computer Data capacity and calculation of data capacity requirements	 Alternatives Use of 1,024 for conversions and calculations would be acceptable Allowance for metadata in calculations may be used 			
1.2.4	Data storage				
Num	ibers	Required			
	How to convert positive denary whole numbers to binary numbers (up to and including 8 bits) and vice versa	 ✓ Denary number range 0 – 255 ✓ Hexadecimal range 00 – FF ✓ Binary number range 0000000 – 11111111 			
	How to add two binary integers together (up to and including 8 bits) and explain overflow errors which may occur	 Understanding of the terms most significant bit, and least significant bit 			
	How to convert positive denary whole numbers into 2-digit hexadecimal numbers and vice versa	 Conversion of any number in these ranges to another number base Ability to deal with binary numbers containing between 1 and 			
	How to convert binary integers to their hexadecimal equivalents and vice versa	 Ability to deal with binary numbers containing between 1 and 8 bits e.g. 11010 is the same as 00011010 			
	Binary shifts	 Understand the effect of a binary shift (both left or right) on a number 			

Bit, nibble, byte, kilobyte & megabyte

Explain how binary data is used to represent numbers in a computer.

- Computers can only store and process binary data.
- They use 1s and 0s to represent the flow of electricity A 1 shows that electricity is flowing and 0 shows that it isn't.
- Each 1 or 0 in binary data is a **bit** (**b**inary digit).

Name	Size
Bit	A single binary digit (0 or 1)
Nibble	4 bits
Byte (B)	8 bits
Kilobyte (KB)	1000 bytes
Megabyte (MB)	1000 kilobytes
Gigabyte (GB)	1000 megabytes
Terabyte (TB)	1000 gigabytes
Petabyte (PB)	1000 terabytes

Traditionally, each unit is defined to be 1024 times bigger than the previous one!

Units of data storage

Unit conversions:

Q1. Jenny has 700 high resolution 10Mb photographs. What size memory card in GB will she need as a minimum to store these images? 7

Q2. An SD card stores films in a compressed format. Each film is 6.7GB. How many films can a 64GB card store?

Q3. A CCTV system records video at 180MB per second. How much storage is required in GB for 90 second of footage?

16.2

9

Sub	topic	Guidance
1.2.3	3 Units	
	 Bit Nibble (4 bits) Byte (8 bits) Kilobyte (1,000 bytes or 1 KB) Megabyte (1,000 KB) Gigabyte (1,000 MB) Terabyte (1,000 GB) Petabyte (1,000 TB) How data needs to be converted into a binary format to be processed by a computer Data capacity and calculation of data capacity requirements 	 Required ✓ Why data must be stored in binary format ✓ Familiarity with data units and moving between each ✓ Calculate capacity of devices ✓ Calculate required capacity for a given set of files ✓ Calculate file sizes of sound, images and text files Sound file size = sample rate x duration (s) x bit depth image file size = colour depth x image height (px) x image width (px) text file size = bits per character x number of characters Alternatives Use of 1,024 for conversions and calculations would be acceptable Allowance for metadata in calculations may be used
1.2.4	1 Data storage	
	How to convert positive denary whole numbers to binary numbers (up to and including 8 bits) and vice versa How to add two binary integers together (up to and including 8 bits) and explain overflow errors which may occur How to convert positive denary whole numbers into 2-digit hexadecimal numbers and vice versa How to convert binary integers to their hexadecimal equivalents and vice versa	 Required ✓ Denary number range 0 - 255 ✓ Hexadecimal range 00 - FF ✓ Binary number range 0000000 - 11111111 ✓ Understanding of the terms most significant bit, and least significant bit ✓ Conversion of any number in these ranges to another number base ✓ Ability to deal with binary numbers containing between 1 and 8 bits e.g. 11010 is the same as 00011010
	Binary shifts	 Understand the effect of a binary shift (both left or right) on a number

How to convert positive denary whole numbers (0-255) into 8 bit binary numbers

Converting 183 into Binary involves the following steps:

- 1. Does 128 go into 183? Yes so put a 1 Under 128. This leaves 55.
- 2. Does 64 go into 55? No so put a 0 under 64. This leaves 55 still.
- 3. Does 32 go into 55? Yes so put a 1 under 32. The leaves 23.
- 4. Does 16 go into 23?. Yes so put a 1 under 16. This leaves 7.
- 5. Does 8 go into 7? No so put a 0 under 8. This still leaves 7.
- 6. Does 4 go into 7? Yes so put a 1 under 4. This leaves 3.
- 7. Does 2 go into 3? Yes so put a 1 under 2. This leaves 1.
- 8. Does 1 go into 1? Yes so put a 1 under 1.

128	64	32	16	8	4	2	1
1							
128	64	32	16	8	4	2	1
1	0						
128	64	32	16	8	4	2	1
1	0	1					
128	64	32	16	8	4	2	1
1	0	1	1				
128	64	32	16	8	4	2	1
1	0	1	1	0			
128	64	32	40				
		52	16	8	4	2	1
1	0	1	16 1	8 0	4	2	1
1	0	1	16 1	8 0	4	2	1
1 128	0 64	1 32	16 1 16	8 0 8	4 1 4	2	1
1 128 1	0 64 0	1 32 1	16 1 16 1	8 0 8 0	4 1 4 1	2 2 1	1
1 128 1	0 64 0	1 32 1	16 1 16 1	8 0 8 0	4 1 4 1	2 2 1	1
1 128 1 128	0 64 0 64	1 32 1 32	16 1 16 1 16	8 0 8 0 8	4 1 4 1	2 2 1 2	1

Convert these denary numbers into their 8 bit binary equivalent:					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 00010100 2. 00110110 3. 01111101 4. 00000010 5. 01100011 6. 00101111				

Adding two 8 bit binary integers and overflow errors.

Overflow errors can occur when adding binary numbers because:

There are not enough bits to hold the answer and a carry remains that cannot be stored.

How to convert 8 bit binary numbers to positive denary whole numbers

The binary number **10110111** can be converted to Denary as:

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	0	1	1	0	1	1	1

If a '1' is present in that column, then you need to add that number to the others...

This means you get: 128 + 0 + 32 + 16 + 0 + 4 + 2 + 1 = 183

С	Convert these binary numbers into their denary equivalent:				
	1. 00000000 = 0				
	2. 0000001 = 1				
	3. 00001111 = 15				
	4. 00010010 = 18				
	5. 00101000 = 40				
	6. 01010101 = 85				
	7. 1000000 = 128				
	8. 11001100 = 204				
	9. 11100011 = 227				
	10. 11111111 = 255				

How to convert from binary to hexadecimal equivalents and vice versa.

To convert 4C from Hexadecimal into base 10:

STEP 1 – split the Hex up and find the binary representation:

4	C
0100	1100

STEP 2 – Put the binary number together, then convert to denary:

128	64	32	16	8	4	2	1
0	1	0	0	1	1	0	0

 $01001100 = 64 + 8 + 4 = \frac{76}{100}$

How to convert from hexadecimal to binary and vice versa.

We can convert from to Hexadecimal by using the following method:

- e.g. Convert 167 into Hexadecimal
- STEP 1 Convert the number into binary:

128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	1

STEP 2 – Split the binary number into two nibbles:

1010 0111

STEP 3 – Convert the two nibbles to Hex:

1010 = A 0111 = 7

Binary shifts

Sub topic	Guidance
Characters The use of binary codes to represent characters The term 'character set' The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.: ASCII Unicode Images	 Required ✓ How characters are represented in binary ✓ How the number of characters stored is limited by the bits available ✓ The differences between and impact of each character set ✓ Understand how character sets are logically ordered, e.g. the code for 'B' will be one more than the code for 'A' ✓ Binary representation of ASCII in the exam will use 8 bits Not required × Memorisation of character set codes
 How an image is represented as a series of pixels, represented binary Metadata The effect of colour depth and resolution on: The quality of the image The size of an image file Sound How sound can be sampled and stored in digital form The effect of sample rate, duration and bit depth on: The playback quality The size of a sound file 	 Required ✓ Each pixel has a specific colour, represented by a specific code ✓ The effect on image size and quality when changing colour depth and resolution ✓ Metadata stores additional image information (e.g. height, width, etc.) Required ✓ Analogue sounds must be stored in binary ✓ Sample rate – measured in Hertz (Hz) ✓ Duration – how many seconds of audio the sound file contains ✓ Bit depth – number of bits available to store each sample (e.g. 16-bit)
1.2.5 Compression The need for compression Types of compression: Lossy Lossless	Required ✓ Common scenarios where compression may be needed ✓ Advantages and disadvantages of each type of compression ✓ Effects on the file for each type of compression ✓ Not required × Ability to carry out specific compression algorithms

The use of binary codes to represent characters

Characters

These are uppercase and lowercase letters, the digits 0-9 and symbols like ?, + and £.

Character Sets

These are collections if characters that a computer recognises from their binary representation, used to convert characters to binary code and vice versa.

Two important character sets	Character	Binary	Denary
 ASCII Each character is given a 7-bit binary code – so ASCII can represent 128 different 	A	0100 0001	65
 characters. An extra bit (0) is added to the start of each binary code so each character uses 1 	В	0100 0010	66
 The codes for numbers and letters are ordered (A comes before B before C). 	С	0100 0011	67
UNICODE	а	0110 0001	97
 Covers all major language, including ones that use different alphabets, like Greek, Russian and Chinese. 	b	0100 0010	98
Uses multiple bytes for each character.The first 128 characters in Unicode are the same as ASCII.	С	0110 0011	99

Sub topic	Guidance
Characters The use of binary codes to represent characters The term 'character set' The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.:	Required ✓ How characters are represented in binary ✓ How the number of characters stored is limited by the bits available ✓ The differences between and impact of each character set ✓ Understand how character sets are logically ordered, e.g. the code for 'B' will be one more than the code for 'A' ✓ Binary representation of ASCII in the exam will use 8 bits
Images How an image is represented as a series of pixels, represented in binary Metadata The effect of colour depth and resolution on: The quality of the image The size of an image file	 ✗ Memorisation of character set codes Required ✓ Each pixel has a specific colour, represented by a specific code ✓ The effect on image size and quality when changing colour depth and resolution ✓ Metadata stores additional image information (e.g. height, width, etc.)
 How sound can be sampled and stored in digital form The effect of sample rate, duration and bit depth on: The playback quality The size of a sound file 	Required ✓ Analogue sounds must be stored in binary ✓ Sample rate – measured in Hertz (Hz) ✓ Duration – how many seconds of audio the sound file contains ✓ Bit depth – number of bits available to store each sample (e.g. 16-bit)
1.2.5 Compression	
 The need for compression Types of compression: Lossy Lossless 	Required ✓ Common scenarios where compression may be needed ✓ Advantages and disadvantages of each type of compression ✓ Effects on the file for each type of compression ✓ Not required × Ability to carry out specific compression algorithms

The use of binary codes to represent characters

Bitmap

A type of image made up from lots of tiny dots, called **pixels**. The colour of each pixel is stored using binary code.

Image resolution

The number of pixels in a bitmap image. Often given as 'width x height.'

Metadata

Data stored in a file which contains information ab out the file. Helps the computer to recreate the image on screen from the binary data in each pixel.

Examples of Metadata include:

- Height and Width
- Colour depth
- Resolution
- File format
- Data created
- Date last edited

Colour Depth

The number of bits used to represent each pixel. The number of colours that can be used for a given colour depth follows this formula:

n (where n = colour depth)

<u>Example</u>

Colour depth = 2 bits

- Number of colours = 2² = 4
- In this example: 00 = white, 01 = light grey, 10 dark grey & 11 = black.

11	01	10	00	
01	10	00	10	
10	00	10	01	
00	10	01	11	

Image File Sizes	Example	Example	Example
Use this formula to calculate file size:	Calculate the size in kB of a 100x100 pixel image with a colour depth of 16 bits.	Calculate the size in MB of a 800 pixels (width) × 600 pixels (height) with a colour depth of 24 bits.	Calculate the size in MB of a 750 pixels (width) × 900 pixels (height) with a colour depth of 32 bits.
File size (in bits) = image resolution x colour depth = width x height x colour depth	<pre>#Calculating the size File size = 100x100x16</pre>	<pre>#Calculating the size File size = 800x600x24</pre>	<pre>#Calculating the size File size = 750x900x32</pre>
Increasing the image resolution or colour depth will usually give a high quality image, but larger file size.	= 160,000 / 8 = 20,000 bytes = 20, 000 / 1000 = 20 KB	= 11,520,000 bits / 8 = 1,440,000 bytes = 1,440,000 / 1000 = 1,440 KB 1,400KB / 1000 = 1.44MB	= 21,600,000 bits / 8 = 2,700,000 bytes = 2,700,000 / 1000 = 2,700 KB 2,700 KB / 1000 = 27MB

Sub	topic	Guidance	
Cha	 racters The use of binary codes to represent characters The term 'character set' The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.: ASCII Unicode ges How an image is represented as a series of pixels, represented in binary Metadata The effect of colour depth and resolution on: The quality of the image The size of an image file 	 Required ✓ How characters are represented in binary ✓ How the number of characters stored is limited by the bits available ✓ The differences between and impact of each character set ✓ Understand how character sets are logically ordered, e.g. the coor for 'B' will be one more than the code for 'A' ✓ Binary representation of ASCII in the exam will use 8 bits Not required × Memorisation of character set codes Required ✓ Each pixel has a specific colour, represented by a specific code ✓ The effect on image size and quality when changing colour depth and resolution ✓ Metadata stores additional image information (e.g. height, width 	
Sou D	nd How sound can be sampled and stored in digital form The effect of sample rate, duration and bit depth on: The playback quality The size of a sound file	Required ✓ Analogue sounds must be stored in binary ✓ Sample rate – measured in Hertz (Hz) ✓ Duration – how many seconds of audio the sound file contains ✓ Bit depth – number of bits available to store each sample (e.g. 16-bit)	
1.2.	5 Compression		
	The need for compression Types of compression: • Lossy • Lossless	Required ✓ Common scenarios where compression may be needed ✓ Advantages and disadvantages of each type of compression ✓ Effects on the file for each type of compression ✓ Not required × Ability to carry out specific compression algorithms	

Sampling

Key definitions

We hear sound as 'analogue' – tones and rhythms blend together smoothly.

If sound has to be handled by the computer – needs to be converted to binary.

'Digitalise' using an input device.

Sound Sampling process

<u>Sampling</u> – Converting analogue sound wave into digital data that can be read and stored by a computer.

<u>Sample frequency</u> – The number of audio samples captured every second. Measured in Hertz (Hz)

<u>**Bit depth**</u> – Number of bits available for each sample.

The height of the wave is measured (sampled) at regular intervals. This is then turned into binary and stored.

Sound File Sizes	Example	Example	Example
Use this formula to calculate file size:	Calculate the file size in MB of a 50 second audio recording with a sample rate of 40kHz and a bit	Calculate the file size in MB for an audio quality recording with a 16-bit depth, sample rate of 44,100 Hz (samples per	Calculate the file size in MB for an audio quality recording with a 24-bit depth, sample rate of 48kHz (samples per second) and duration of 5
File size (in bits) = Sample rate (in Hz) x bit depth x length (in Secs)	depth of 8 bits. #Calculating the size File size = 40kHz = 40,000 Hz =50x40,000x8 = 16,000,000 bits	second) and duration of 3 minutes. #Calculating the size File size = 16x44,100x180 = 127,008,000 bits	minutes. #Calculating the size File size = 48kHz = 48,000 Hz = 5 mins = 300 secs 24x48,000x300 = 245,600,000
A higher sample rate or bit depth will give a higher quality sound file, but will increase the file size.	#Calculating in MB 16,000,000 bits = 16,000,000 / 8 = 2,000,000 bytes = 2,000,000 / 1000 = 2000 KB = 2000 KB / 1000 = 2GB	#Calculating in MB 127,008,000 bits = 127,008,000 / 8 = 15,876,000 bytes = 15,876,000 / 1000 = 15,876 KB 15,876 / 1000 = 15.876 MB	= 345,600,000 bits #Calculating in MB = 345,600,000 / 8 = 43,200,000 bytes = 43,200,000 / 1000 = 43,200 KB 43,200KB / 1000 = 43.2 MB

The effect of doubling the bit rate on the quality of the sound and file size

Sub	topic	Guidance
Char Char Image Sour	acters The use of binary codes to represent characters The term 'character set' The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.: ASCII ONICODE Ses How an image is represented as a series of pixels, represented in binary Metadata The effect of colour depth and resolution on: The quality of the image The size of an image file How sound can be sampled and stored in digital form The effect of sample rate, duration and bit depth on:	 ✓ How characters are represented in binary ✓ How the number of characters stored is limited by the bits available ✓ The differences between and impact of each character set ✓ Understand how character sets are logically ordered, e.g. the code for 'B' will be one more than the code for 'A' ✓ Binary representation of ASCII in the exam will use 8 bits Not required × Memorisation of character set codes Required ✓ Each pixel has a specific colour, represented by a specific code ✓ The effect on image size and quality when changing colour depth and resolution ✓ Metadata stores additional image information (e.g. height, width, etc.) Required
	 The playback quality The size of a sound file 	 ✓ Analogue sounds must be stored in binary ✓ Sample rate – measured in Hertz (Hz) ✓ Duration – how many seconds of audio the sound file contains ✓ Bit depth – number of bits available to store each sample (e.g. 16-bit)
1.2.5	Compression	
	The need for compression Types of compression: • Lossy • Lossless	Required ✓ Common scenarios where compression may be needed ✓ Advantages and disadvantages of each type of compression ✓ Effects on the file for each type of compression ✓ Not required × Ability to carry out specific compression algorithms

Units of data storage

Case study:

Elizabeth is looking to upgrade her phone. She is choosing between model A and model B.

	Model A	Model B
Storage capacity	64GB	256GB
Camera	8 mega-pixel, 24bit colour	12 mega-pixel, 24 bit colour
Video	1080p (2 mega-pixel) at 24 fps, 30 fps, or 60 fps	4K HD (8 mega-pixel) at 24 fps, 30 fps, or 60 fps

Consider that 32GB of data storage will be used for apps. Assume 50% compression.

Maximum number of	8,000,000 bit resolution.	12,000,000 bit resolution.
photographs that could be stored	x 24 bit = 192,000,000 bits.	X 24 bit = 288.000.000 bits.
on the phone:	Divide by 8 for bytes =	Divide by 8 for bytes =
	24,000,000 bytes or 24MB	36,000,000 bytes or 36MB
	Per photograph.	Per photograph.
	32,000 (32GB) divided by 24 =	224,000 (224GB) divided by 36 =
	1,333 uncompressed photos.	6,222 uncompressed photos.
	x 2 due to 50% compression =	x 2 due to 50% compression =
	2,666 photos.	12,444 photos.