J277-2.4 Boolean logic

2.4 - Boolean logic

Sub topic

2.4.1 Boolean logic

$\square \quad$ Simple logic diagrams using the operators AND, OR and NOT
Truth tables
NOT
\square Applying logical operators in truth tables to solve problems

Guidance

Required

$\checkmark \quad$ Knowledge of the truth tables for each logic gate
\checkmark Recognition of each gate symbol
$\checkmark \quad$ Understanding of how to create, complete or edit logic diagrams and truth tables for given scenarios
$\checkmark \quad$ Ability to work with more than one gate in a logic diagram

Boolean Operators	Logic Gate Symbol
AND (Conjunction) OR (Disjunction)	

Truth Tables

AND			OR			NOT	
A	B	A AND B	A	B	A OR B	A	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Alternatives

- Use of other valid notation will be accepted within the examination, e.g. Using T/F for $1 / 0$, or V for OR, etc.

J277-2.4 Boolean logic

Simple logic diagrams using the operations AND, OR and NOT
Used to change bits and perform calculations within a computer. They are created by using transistors.
There are 3 basic logic gates:

The AND Gate

- Only has an output of 1 if both A AND B are 1
- We write this as: $\mathbf{A} \wedge B$

The OR Gate

- Has an output of 1 if either of A OR B are 1
- We write this as: $\mathbf{A} \vee B$

The NOT Gate

- Has an 1 input only
- It INVERTS or swaps the input
- We write this as: $\neg \mathbf{A}$

J277-2.4 Boolean logic

2.4 - Boolean logic

Sub topic

Guidance

2.4.1 Boolean logic

\square Simple logic diagrams using the operators AND, OR and NOT
$\square \quad$ Combining Boolean operators using AND, OR and NOT
\square Applying logical operators in truth tables to solve problems

Required

$\checkmark \quad$ Knowledge of the truth tables for each logic gate
$\checkmark \quad$ Recognition of each gate symbol
$\checkmark \quad$ Understanding of how to create, complete or edit logic diagrams and truth tables for given scenarios
$\checkmark \quad$ Ability to work with more than one gate in a logic diagram

Boolean Operators	Logic Gate Symbol
AND (Conjunction) OR (Disjunction)	

Truth Tables

AND			OR				NOT	
A	B	A AND B	A	B	A OR B	A	NOT A	
0	0	0	0	0	0	0	1	
0	1	0	0	1	1	1	0	
1	0	0	1	0	1			
1	1	1	1	1	1			

Alternatives

- Use of other valid notation will be accepted within the examination, e.g. Using T/F for 1/0, or V for OR, etc.

Combining Boolean operators using AND, OR and NOT to two levels

Logic diagram for the expression: NOT (A AND B)
Alternative notation : $\neg(\mathbf{A} \wedge \mathbf{B})$

Combining Boolean operators using AND, OR and NOT to two levels

Logic diagram for the expression: NOT(A AND B) AND C)
Alternative notation $: ~ \neg((A \wedge B) \wedge C)$

J277-2.4 Boolean logic

Applying logical operators in truth tables to solve problems

Draw the truth table for the following logic statement: $\neg(A \wedge B)$

| | | | |
| :---: | :---: | :---: | :---: | :---: |
| | A | B | |

```
\[
\neg(A \wedge B)
\]
```

Draw the truth table for the following logic statement:

Applying logical operators in truth tables to solve problems
Draw the truth table for the following logic statement: $\quad \neg((\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C})$

A	B	C	$A \wedge B$	$(A \wedge B) \wedge C)$	$\neg((A \wedge B) \wedge C)$
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	1	0	1
1	1	1	1	1	0

J277-2.4 Boolean logic

Create, complete or edit logic diagrams and truth tables for given scenarios

Logic diagram and truth table for the following scenario:
"A factory has an automated manufacturing system which operates in an "ON" state (OUTPUT X) if either it is manually switched on by an operator (INPUT A), OR a computer system triggers a scheduled production run (INPUT B). The system also has an emergency override (INPUT C) which in its normal operating state is feeding no signal to the computer system, when it is pressed however it triggers a positive "TRUE" state (1) which should result in the system shutting down."

A	B	C	V $=$ A OR B	$W=$ NOT C	$X=$ V AND W
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

