fURTHER

WHAT DO I NEED TO KNOW

I. To solve problems involving constant
, acceleration in 2 dimensions, use the SUV AT
equations with vector components where
u is the initial velocity
$\mathrm{r} a$ is the acceleration
iv is the velocity at time t (t is a scalar)
, r is the displacement at time \dagger
2. To solve problems involving variable acceleration in 2 dimensions, use calculus I with vectors by considering each function of 1 t time (the vector component) separately.
'3. When integrating a vector for a variable
, acceleration problem, the constant of I integration, c, will also be a vector.
4. To find constants of integration, look for I initial conditions or boundary conditions.
15. Displacement, velocity \& acceleration can , be given using $i-j$ notation, or as column i vectors.

DOT NOTATION \& DIFFERENTIATING VECTORS

Dot notation is a shorthand for differentiation with respect to time.

$$
\dot{x}=\frac{\mathrm{d} x}{\mathrm{~d} t} \quad \dot{y}=\frac{\mathrm{d} y}{\mathrm{~d} t} \quad \ddot{x}=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \quad \ddot{y}=\frac{d^{2} y}{d t^{2}}
$$

To differentiate a vector quantity in the form $f(t) \mid l+g(t) j$, differentiate each function of time separately.
If $r=x \mathrm{i}+y j$, then $v=\frac{\mathrm{d} r}{\mathrm{~d} t}=\dot{r}=\dot{x} \mathrm{i}+\dot{y} j$ and $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=\ddot{r}=\ddot{\mathrm{x}} \mathrm{i}+\ddot{y} j$

