PROJECTILES

KEY WORDS & DEFINITIONS

I. Projectile

A particle moving in a vertical plane under the action of gravity.

2. Angle of Projection The initial angle the projectile makes with the horizontal direction.

3. Speed

The magnitude of the velocity, or the resultant velocities.

4. Range

The horizontal distance that the particle travels.

5. Time of Flight

The time taken for the projectile to hit the ground, or other horizontal surface, after being projected.

HORIZONTAL & VERTICAL COMPONENTS OF INITIAL VELOCITY

If a particle is projected with an initial velocity u, at an angle α above the horizontal, α is called 'The angle of projection'.

The velocity can be resolved into components that act horizontally and vertically.

$u \sin \alpha$ u $u \cos \alpha$

The horizontal component of the initial velocity = $u \cos \alpha$

The vertical component of the initial velocity = u sin $\boldsymbol{\alpha}$

WHAT DO I NEED TO KNOW

I. The horizontal acceleration of a particle = 0

- 2. The horizontal velocity of a particle is constant. Therefore s = vt
- 3. The vertical acceleration a of a partical = g (constant)
- 4. To find the horizontal & vertical components of the initial velocity, resolve horizontally & vertically
- 5. When a projectile reaches its maximum height, the vertical component of velocity = 0
- 6. Acceleration due to gravity = 9.8m/s² This does not depend on the mass of the object.
- 7. The degree of accuracy in your answers must be consistent with the values given in the question.
 I.e. if g = IOm/s² in the question, your answer should also be given to I sig. fig. Do not leave exact surd answers.
- 8. Many projectile problems can be solved by first using the vertical motion to find the total time taken.

POSSIBLE EQUATIONS TO DERIVE

For a particle projected with initial velocity U at angle lpha above horizontal and moving freely under gravity:

- Time of flight = $\frac{2U\sin\alpha}{a}$
- Time to reach greatest height $= \frac{U \sin \alpha}{a}$
- Range on horizontal plane = $\frac{U^2 \sin 2\alpha}{\alpha}$
- Equation of trajectory:

$$v = x \tan \alpha - \frac{gx^2}{2U^2} (1 + \tan^2 \alpha)$$

where ${m y}$ is the vertical height of particle and ${m x}$ is the horizontal distance from the point of projection.