MODELLING IN MECHNANICS

KEY WORDS \& DEFINITIONS

1. Model - A mathematical system which enables a problem to be solved
2. Light - Has negligible mass
3. Static - Mot moving
4. Rigid - Doesn't bend
5. Thin - Has negligible thickness
6. Smooth - Has a surface that results in no friction between itself and an object
7. Rough - Has a surface that requires frictional forces between itself and an object to be considered
8. Particle - Dimensions are negligible, so mass or object is at a point. Rotational forces and air resistance can be ignored.
9. Rod - A long, thin, straight object. Mass is along a line that is rigid.
10. Lamina - A thin 2-dimensional surface with mass distributed evenly across its flat surface.
II. Uniform Body - Mass is distributed evenly, so acts at the centre of mass.
11. Light string - Has negligible mass and equal tension at both ends.
12. Inextensible string - A string that does not stretch so that connected objects can move with the same acceleration if the string is taut.
13. Wire - A rigid, thin length of metal.
14. Smooth and Light Pulley - A pulley that has no mass and results in tension being equal on either side
15. Bead - A particle with a hole in it which can freely move along a wire or string, resulting in equal tension either side of the bead.
16. Peg - A supporting object that is dimensionless and fixed but may be rough or smooth.
17. Air Resistance - The resistance force as experienced as on object moves through the air, which is often modelled as negligible.
18. Gravity - The force of attraction between objects.
19. Earth's Gravity - Assumed to apply to all objects with mass. Acts uniformly and vertically downwards with a value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$
20. Scalar - A quantity which has magnitude only - distance, speed, time, mass. Always positive
21. Vector - A quantity which has magnitude and direction - displacement, velocity, acceleration, force, I , weight. Can be described using column or ij notation. Can be positive or negative. Distance is the magnitude of the displacement vector Speed is the magnitude of the velocity vector

SI BASE UNITS

Quantity	Mass	Length/ Displacement	Time	Speed/ Velocity	Acceleration	Weight/ Force
Sumbol	kg	m	s	ms^{-1}	$\mathrm{~ms}^{-2}$	N $\left(=\mathrm{kgms}^{-2}\right)$

