
Component 1 | 1.4.2| Data structures

Specification & learning objectives

A Level Specification point description

1.4.2a Arrays (of up to 3 dimensions), records, lists, tuples

The properties of stacks and queues

1.4.2b
The following structures to store data: linked list, graph (directed and undirected), stack, queue, tree, binary search
tree, hash table

1.4.2c
How to create, traverse, add data to and remove data from the data structures mentioned above (This can be either
using arrays and procedural programming or an object-oriented approach)

Resources

PG Online textbook page ref: 179-221

Hodder textbook page ref: 156-173

CraignDave videos for SLR 14

https://www.youtube.com/watch?v=b8s0-VLkVA0&list=PLCiOXwirraUClSdjZJ6YNwKXQDomG35kf

Component 1 | 1.4.2| Data structures

Component 1 | 1.4.2| Data structures

Key question: What are the uses of stacks and queues, and how do they work?

Component 1 | 1.4.2| Data structures

Key question: How do linked lists work?

Linked lists are a valuable programming tool. They allow you to add even more structure than
just ordering a list.

Every element (or node) in a linked list points to a neighbouring node. This means if
the program accesses any node, it can then find its linked node. For example:

This is a singly-linked list. Each node in the
above diagram has two parts. The node
item itself, and a "pointer". The pointer

tells the program where the next
associated node is located.

Component 1 | 1.4.2| Data structures

Key question: How do linked lists work?

A doubly-linked list has two pointers. One references the

location of the next node and the other points to the previous

node. If the 'previous node' is null, then that is the start of the

list. If the 'next pointer' is null, then that is the end of the list.

These pointers and the links they create make it simple to insert

or delete items from a list without breaking the order. If an item is

added or removed, the pointers of its neighbours are updated.

They also make it simple for a program to traverse the list.

Linked lists are the basis of much more

complicated structures such as stacks,

queues and trees…

Component 1 | 1.4.2| Data structures

Key question: How do graphs work with breadth and depth searches?

A graph is a dynamic data structure for modelling connections
or relationships between items. A graph is dynamic because it
can grow and shrink at runtime.

Directed graph

Undirected graph

Labelled or
weighted graph

Component 1 | 1.4.2| Data structures

Key question: How do graphs work with breadth and depth searches?

The movement of a program through a graph is called traversal. There are several types of
traversal, each following a different algorithm.

Breadth first
traversal

•Designate one vertex as the 'root', where the traversal

begins.

•Visit each vertex connected to the root.

•Once all directly connected vertices are visited, visit

vertexes one step farther away.

4. Finally it visits the vertex Elephant, as it is

the most separated from the root.

1. Camel is designated as the root. It is the first

vertex visited by the algorithm.

2. It then visits

vertices Alpaca and Go

at, as they are directly

connected to the root.
3. It then visits

vertices Cow and Sheep,

as they are one step farther

from the root.

Component 1 | 1.4.2| Data structures

Key question: How do graphs work with breadth and depth searches?

Depth first
traversal

•This algorithm picks one path and follows it to the end.
•It then backtracks and follows the next path to its end.
•It will continue this until all vertices have been visited.

2. Backtrack 1 step

 E

3. Backtrack 2 steps  C  F

1. A  B  D

Component 1 | 1.4.2| Data structures

Key question: How do trees and binary trees work?

In the data structures we have discussed so far, no one
piece of data is more important than another. Stacks and
queues limit access to all but one or two items, but overall
each item simply points to the next in line.

The tree data structure is
different. Trees

use hierarchy to organise
data, with data in lower
'branches' connected to
data above and below.

2. which is a subset of
CARNIVORA1. LION and

TIGER are

subsets of
PANTHERA

3. which is a

subset of the

MAMMALS
group.

Trees are useful tools in that
they allow for easy searching on
the data they contain. Database
systems make extensive use of
trees to index their data.

Component 1 | 1.4.2| Data structures

Key question: How do trees and binary trees work?

Component 1 | 1.4.2| Data structures

Key question: How do trees and binary trees work?

The area 1., highlighted in green,

could be labelled as a sub-tree

within the tree,

A is the root node.

It is connected via

branches

to B and C.

B is a parent

node to its

child

nodes D and E
.

while C is the

parent node to F.

Component 1 | 1.4.2| Data structures

Key question: How do hash tables work?

Hash table is a type of data structure. It allows data of any size to be
mapped with a related but fixed size form.

For example a certain hashing function might map its input data into a
fixed 32 bit number. This allows searching and comparing to be faster
and more efficient.

For example, imagine a group of data items, where each item is a copy
of the text of the novel 'War and Peace', but with a single random word
in the text changed.

You can store the copies in a list or an array. But if

you later want to run a search looking for a

particular copy, the search will be very, very

inefficient and slow.

This is where Hashing comes in – they can
reduce the search time of even massive data
sets to something manageable.

Component 1 | 1.4.2| Data structures

Key question: How do hash tables work?

These hashes are created by applying a hash function to the

data items.

This example will show a simple hash function

using a Modulo 11 calculation. This divides

each number by 11 as many times as it will fit,

then records the remainder.

Running the hash function on the data set produces the following set of

hashes:

{7, 0, 4, 9, 1}

Component 1 | 1.4.2| Data structures

Typical exam questions

1. Describe how adding new items differs between a stack and a queue. [2]

A tree structure storing the sentence “Jack Spratt could eat no fat”

with the algorithm for insertion into a tree:

2. Using this algorithm show the steps which would be taken to add the word “and” to the tree: [5]

3. This tree structure could be stored in either an array or a linked list. Describe one main different between an array and a linked list. [2]

Jack

could Spratt

eat

fat

no

1. If tree is empty enter data item at root and stop.
2. Current node = root.
3. Repeat steps 4 and 5 until current node is null.
4. If new data is less than value at current node go left,

else go right.
5. Current node = node.
6. Create new node and enter data.

Component 1 | 1.4.2| Data structures

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 175-186 from your A Level Key Terminology should be included and formatted.

 You must explain records, lists, tuples, arrays of 1-3 dimensions and the difference between static and dynamic data structures.


You must include a series of annotated diagrams which clearly show a representation of stack and queue, including operations of pushing and popping and
pointers. Consider overflow and underflow.

 You must include a series of annotated diagrams which show a representation of the data structures: linked list, binary tree, graph and hash table.

 You must illustrate how data is found, added and deleted from a linked list, binary tree, graph and hash table using both arrays and object approaches.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Component 1 | 1.4.2| Data structures

Reflection & Revision checklist

Confidence Clarification

 Candidates should be able to describe what is meant by arrays (up to 3 dimensions), records, lists and tuples.

 Candidates are expected to be able recognise when they can be used and incorporate them in their programs to store data.

 Candidates should have an understanding of the purpose and use of a record structure to store data of different data types in a program.

 Candidates should have experience of using records to store, search, manipulate and retrieve data.

 Candidates should have an understanding of the purpose and use of a list to store data in a program.

 Candidates should have experience of using lists to store, search, manipulate and retrieve data.

 Candidates should have an understanding of the purpose and use of tuples to store data in a program.

 Candidates should have experience of using tuples to store, search, manipulate and retrieve data.

 Candidates need to have an understanding of the behaviour of stacks and queues (i.e. LIFO and FIFO).

 Candidates need to have an understanding of the behaviour of linked-lists, graphs, stacks, queues, trees, binary search trees and hash tables.


Candidates need to be able be aware of how the aforementioned data structures can be implemented. We would recommend a general understanding

of these principles that can be applied to a given scenario rather than trying to memorise code patterns.


Candidates should have experience of implementing these structures in a variety of contexts, for example through a procedural program, through a

different data structure and through an object-oriented approach.


Candidates need to be able to read, trace and write code to implement features of these data structures. (Again we would recommend a general

understanding backed up with practice implementing them, rather than trying to memorise code patterns).

