Component 1 | 1.4.2| Data structures

Specification & learning objectives

A Level Specification point description

1.4.2a Arrays (of up to 3 dimensions), records, lists, tuples

The properties of stacks and queues
The following structures to store data: linked list, graph (directed and undirected), stack, queue, tree, binary search

1.4.2b
tree, hash table
1.4.9¢ How to create, traverse, add data to and remove data from the data structures mentioned above (This can be either
o using arrays and procedural programming or an object-oriented approach)
Resources

PG Online textbook page ref: 179-221
Hodder textbook page ref: 156-173

CraignDave videos for SLR 14

arr[0]—
arr[1]—»

arr[2]—»

arr[3]—»

arr[4]—»

https://www.youtube.com/watch?v=b8s0-VLkVA0&list=PLCiOXwirraUClSdjZJ6YNwKXQDomG35kf

Component 1 | 1.4.2| Data structures

Types of data structure Examples

Data
structure

A collection of related data held in a
computer's memory.

Array, list, record,
etc.

Array/list vocab

Heap

A pool of unused memory that can be allocated to a dynamic data
structure as needed.

Elementary
data type

A class of data objects with a set of operations
for creating and manipulating them.

Character, integer,
float/real, Boolean

Array

A set of related data items stored under a single identifier. Can work
on one or more dimensions.

Structured
data type

A structure that holds a collection of data
values. This collection will generally consist of
the elementary data types.

Array, record, class,
file

Index

An element’s position within an array.

Composite
data type

Any data type that is constructed using other
elementary or composite data types.

Array, string,
record, tuple, list

Multi-
dimensional
array

An array containing more than one array. For example, 2-
dimensional arrays can be visualised as rows and columns.

Element

A variablefvalue inside of an array.

Abstract
data type

A conceptual model of how data can be stored
and the operations that can be carried out on
the data.

Stack, queue,
linked list,
dictionary

Record

A record is an abstract data structure in which each element may be
of a different type, similar to a tuple. However, the record size is
fixed.

Static data
structure

A method of storing data where the amount of
data stored (and memory used to store it) is
fixed — the size cannot be changed.

Array, tuple, record

Tuple

A sequenced data structure similar to a record, however is
immutable.

Dynamic
data
structure

A method of storing data where the amount of
data stored (and memory used to store it) will
vary as the program is being run —the size can
change.

List (in Python)

Immutable

Once an immutable data structure has been defined it is not possible
to delete, add or edit any values inside of it.

Dictionary

An abstract data type storing items, or values. A value is accessed by
an associated key.

List

F1%

An abstract data type that represents a countable number of ar |
ordered values, where the same value may occur more than once. |

Linked list

A dynamic abstract data structure which can be implemented as an
array and pointers — composed of nodes, containing the data and a
pointer.

Node

A data point within a diagram or network.

Pointer

The index of another relevant (eg. the next node in a linked list)

guestion: What are the uses of stacks and

Component 1 | 1.4.2| Data structures

Stacks and queues vocab

An abstract data structure where the first item added is the first item
removed (FIFO).

Circular queue

A linear data structure in which the operations are performed based on
FIFO (First In First Out) principle and the last position is connected back
to the first position to make a circle.

Priority queue

Like a regular queue or stack data structure, but where additionally each
element has a "priority" associated with it. In a priority queue, an
element with high priority is served before an element with low priority.

First In, First Out
(FIFO)

Where the first item added is the first item removed (FIFD).

Engueue

A procedure for adding an item of data to the back of a queue.

Dequeue

A procedure for removing an item of data from the front of a queue.

isEmpty

A function used to check whether a queue has a size of 0.

isFull

A function used to check whether a queue’s size is equal to the maximum
size it was initialised with.

Append

Adding an element into an array.

Push

Adding an element onto the top of a stack.

Pop

Removing an element from the top of a stack.

Stack

An abstract data structure where the last item added is the first item
removed (LIFO).

Last In, First Out
(LIFO)

Where the last item added is the first item removed (LIFO).

Overflow

Occurs when trying to push more items onto a stack than it can hold.

Underflow

Occurs when trying to pop an item from an empty stack.

Call stack

A stack data structure that stores information about the active
subroutines of a computer program.

Stack frame

The collection of all data on the stack associated with one subprogram
call. Includes the return address, argument variables passed on the stack,
and local variables.

Parameter

A specific kind of variable used to pass information between functions or
procedures.

Return address

The location directly after where a subroutine is called. When a return
statement is called in a subroutine or the subroutine completes the

goes to the return address and continues running the program.

gueues, and how do they work?

push(.

. S
popd}

stack pointer _}l

ISTACK

function isEmpty
if size == @ then
return True
else
return False
endif
endfunction

function isFull
if size == maxSize then
return True
else
return False
endif
endfunction

\\ dequeus
enquieue .

procedure enqueuenewltem)
if size == maxSize then
print ("Queue full®™)
else
rear = (rear + 1) MOD ma
g[rear] = newItem
size = sire + 1
endif
endprocedure
procedure dequeue(item)
if g.isEmpty() then
print (“gueue empty™)
lse
q.pop(@)
endif

endprocedure

Component 1 | 1.4.2| Data structures

Key question: How do linked lists work?

Linked lists are a valuable programming tool. They allow you to add even more structure than
just ordering a list.

Every element (or node) in a linked list points to a neighbouring node. This means if
the program accesses any node, it can then find its linked node. For example:

Node Node Node
item > item ‘—I_) item .__)

" Thisis a singly-linked list. Each node in the
above diagram has two parts. The node
item itself, and a "pointer". The pointer

tells the program where the next

K associated node is located. 4

Component 1 | 1.4.2| Data structures

Key question: How do linked lists work?

A doubly-linked list has two pointers. One references the
location of the next node and the other points to the previous
node. If the 'previous node' is null, then that is the start of the
list. If the 'next pointer' is null, then that is the end of the list.

Node > Node Node .
item item item
@ |< O l: o

These pointers and the links they create make it simple to insert
or delete items from a list without breaking the order. If an item is
added or removed, the pointers of its neighbours are updated.
They also make it simple for a program to traverse the list.

complicated structures such as stacks,

Linked lists are the basis of much more
queues and trees...

Component 1 | 1.4.2| Data structures

Key question: How do graphs work with breadth and depth searches?

A graph is a dynamic data structure for modelling connections
or relationships between items. A graph is dynamic because it
can grow and shrink at runtime.

Directed graph
erap Labelled or

weighted graph

Undirected graph

Vertex

Component 1 | 1.4.2| Data structures

Key question: How do graphs work with breadth and depth searches?

The movement of a program through a graph is called traversal. There are several types of
traversal, each following a different algorithm.

*Designate one vertex as the 'root’, where the traversal
begins.

*Visit each vertex connected to the root.

*Once all directly connected vertices are visited, visit

Breadth first
traversal

2. It then visits

vertices Alpaca and Go 7 1. Camel is designated as the root. It is the first

at, as they are diree&l& vertex visited by the algorithm.
ot.

Came
connected to the ro | ~_ 3 It then Visits
vertices Cow and Sheep,
Alpaca Sl as they are one step farther
/ \ from the root.
Cow Sheep

ey Elephant

4. Finally it visits the vertex Elephant, as itis
the most separated from the root.

Component 1 | 1.4.2| Data structures

Key question: How do graphs work with breadth and depth searches?

Depth first *This algorithm picks one path and follows it to the end.
*It then backtracks and follows the next path to its end.
traversal *It will continue this until all vertices have been visited.

2. Backtrack 1 step

Component 1 | 1.4.2| Data structures

Key question: How do trees and binary trees work?

In the data structures we have discussed so far, no one
piece of data is more important than another. Stacks and

qgueues limit access to all but one or two items, but overall
each item simply points to the next in line.

4

\
3. which is a
subset of the
MAM MAL MAMMALS
group. |
CARNIVORA
1. LION and
TIGER are
PANTHERA
subsets of
PANTHERA
LION TIGER

The tree data structure is
different. Trees
use hierarchy to organise
data, with data in lower
'‘branches' connected to
data above and below.

Trees are useful tools in that
they allow for easy searching on
the data they contain. Database
systems make extensive use of
trees to index their data.

Component 1 | 1.4.2| Data structures

Key question: How do trees and binary trees work?

There are a standard set of terms to describe part of a tree. These are as follows:
Tree: Describes the entire data structure
Node: A single item within the tree

Branch: a branch connects one node to another. On paper it is shown as a line joining the node pair.

Nodes are classified by their position within a tree:

Root: The highest node in a tree (or subtree). All other items ultimately connect back to the root via
branches.

Child and Parent nodes: If a node is one position higher in the tree than another, it is called a 'parent
node'. Nodes one position lower, connected by branches, are 'child nodes’

Subtrees are sections of a tree comprising a parent node and all of the child nodes below it.

Binary trees are a type of tree that is limited in having only two child nodes per parent node. Regular
trees have no such limit.

Component 1 | 1.4.2| Data structures

Key question: How do trees and binary trees work? _
A Is the root node.

It IS connected via

€ . branches
" /x" x\\ to B and C.
B Is a parent B C
node to its /N b
child P A / while Cis the

nodes D and E parent node to F.

The area 1., highlighted in green,
could be labelled as a sub-tree
within the tree,

Component 1 | 1.4.2| Data structures

Key question: How do hash tables work?

Hash table is a type of data structure. It allows data of any size to be
mapped with a related but fixed size form.

For example a certain hashing function might map its input data into a
fixed 32 bit number. This allows searching and comparing to be faster
and more efficient.

For example, imagine a group of data items, where each item is a copy
of the text of the novel 'War and Peace’, but with a single random word
in the text changed.

You can store the copies in a list or an array. But if
you later want to run a search looking for a
particular copy, the search will be very, very
inefficient and slow.

This is where Hashing comes in — they can
reduce the search time of even massive data
sets to something manageable.

Component 1 | 1.4.2| Data structures

Key question: How do hash tables work?

These hashes are created by applying a hash function to the
data items.

This example will show a simple hash function
using a Modulo 11 calculation. This divides
each number by 11 as many times as it will fit,
then records the remainder.

31407812 10037467 75203429 52783465 62387678

MOD 11 MOD 11 MOD 11 MOD 11 MOD 11

7 0 4 9 1

Running the hash function on the data set produces the following set of
hashes:

Component 1 | 1.4.2| Data structures

Typical exam questions

1. Describe how adding new items differs between a stack and a queue. [2]

A tree structure storing the sentence “Jack Spratt could eat no fat” Jack
with the algorithm for insertion into a tree:

If tree is empty enter data item at root and stop.
Current node = root.
Repeat steps 4 and 5 until current node is null.
If new data is less than value at current node go left,
eat no else go right.

Current node = node.
6. Create new node and enter data.

could Spratt

PwnpR

fat

2. Using this algorithm show the steps which would be taken to add the word “and” to the tree: [5]

3. This tree structure could be stored in either an array or a linked list. Describe one main different between an array and a linked list. [2]

Component 1 | 1.4.2| Data structures

Target: Overall grade:

Minimum expectations & learning outcomes

O Terms 175-186 from your A Level Key Terminology should be included and formatted.
O You must explain records, lists, tuples, arrays of 1-3 dimensions and the difference between static and dynamic data structures.
O You must include a series of annotated diagrams which clearly show a representation of stack and queue, including operations of pushing and popping and
pointers. Consider overflow and underflow.
O You must include a series of annotated diagrams which show a representation of the data structures: linked list, binary tree, graph and hash table.
O You must illustrate how data is found, added and deleted from a linked list, binary tree, graph and hash table using both arrays and object approaches.
O Answer the exam questions.
Feedback
Breadth Depth Presentation Understanding
O All O Analysed O Excellent O Excellent
O Most O Explained O Good O Good
0 Some [Described O Fair O Fair
O Few O Identified O Poor O Poor

Comment & action required

Component 1 | 1.4.2| Data structures

Reflection & Revision checklist

Confidence

Clarification

®O0
®O0
®O0
@O0
@O0
®O0
®O0
®O0
60
®O0

®@O0

®O0

e

Candidates should be able to describe what is meant by arrays (up to 3 dimensions), records, lists and tuples.

Candidates are expected to be able recognise when they can be used and incorporate them in their programs to store data.

Candidates should have an understanding of the purpose and use of a record structure to store data of different data types in a program.
Candidates should have experience of using records to store, search, manipulate and retrieve data.

Candidates should have an understanding of the purpose and use of a list to store data in a program.

Candidates should have experience of using lists to store, search, manipulate and retrieve data.

Candidates should have an understanding of the purpose and use of tuples to store data in a program.

Candidates should have experience of using tuples to store, search, manipulate and retrieve data.

Candidates need to have an understanding of the behaviour of stacks and queues (i.e. LIFO and FIFO).

Candidates need to have an understanding of the behaviour of linked-lists, graphs, stacks, queues, trees, binary search trees and hash tables.

Candidates need to be able be aware of how the aforementioned data structures can be implemented. We would recommend a general understanding
of these principles that can be applied to a given scenario rather than trying to memorise code patterns.

Candidates should have experience of implementing these structures in a variety of contexts, for example through a procedural program, through a
different data structure and through an object-oriented approach.

Candidates need to be able to read, trace and write code to implement features of these data structures. (Again we would recommend a general
understanding backed up with practice implementing them, rather than trying to memorise code patterns).

