Component1 | 1.2.2| Application generation

Specification & learning objectives

A Level Specification point description

1.2.2a The nature of applications, justifying suitable applications for a specific purpose

1.2.2b Utilities

1.2.2c Open source vs Closed source
1.2.2d Translators: interpreters, compilers and assemblers
1.2.2e Stages of compilation (Lexical analysis, Syntax analysis, Code generation and Optimisation)
1.2.2f Linkers and loaders and use of libraries
Resources

PG Online textbook page ref: 39-50
Hodder textbook page ref: 97-99, 107-115

CraignDave videos for SLR 5

https://www.youtube.com/watch?v=gIzbuiSnuUA&list=PLCiOXwirraUA9EgGVmuqzxonorZHPKNJN

Component1 | 1.2.2| Application generation

Application- Any program which is made for the user.

Utilities- Looks after the PC’s with a firewall, disk defragmentation and zips(file compressions).

Open source- A piece of software that comes with the original source code, normally free of charge and
used for creativity.

Closed open- A piece of software that doesn’t come with the source code and is copyrighted

Source code- The original code for the software.

Open source v" Closed source

v' Free license v Free support
¥v" Can madify as the user v' Free updates
v" Source code is available v" Software is covered by trade description act
(must work)
¥" Can share with others o Software can’t be altered
v" New versions must be shared 0 The source code isn’t easy to get
o Pay for support o Software can’t be shared with other users
o Finished product may not look professional
P
Types of applications * Word processor
(Don’t name brands like * Desktop publisher
Microsoft) * Spreadsheets

Data base management

Social networking

Email clients

Web browsing

Gaming

Slideshow and presenting
Multimedia and video editing
Photo and graphic manipulation
Communication, chat and IM

Component1 | 1.2.2| Application generation

Utility Description

Disk Over time files on hard drives can become split up and spread apart making retrieval
Defragmenters of files slower. This software helps to consolidate the parts of the files back together.

Anti-virus Helps to detect and remove malicious programs which have often been designed to
Programs harm a computer in some way.

Compression Reduces the amount of space information takes up on a storage device.

Utilities

Backup Utilities Provides a way to recover data in case the original copy gets lost, deleted or
corrupted.

File Managers Allows directories, folders and files and to created, moved, copied, deleted and
renamed.

Component1 | 1.2.2| Application generation

Key question: In what ways do typical businesses use applications software?

Although open source software is very popular with private citizens, open source applications are
also widely used in commercial organisations. Businesses do this when it makes commercial sense

to do so. This usually means the open source applications they choose to use are mature, stable
and well supported.

For example web sites are hosted on fully commercial servers that are
maintained under contract - they are not free! But at the same time, the
software applications running on the server may be open source.

A typical web server could be running:-

Apache (open source web server application - approx 50% of all web sites use this)
MySQL (database application)

PHP (web programming language)

Linux (open source operating system)

Non-technical businesses in general do not want the burden of
maintaining and updating open source software and so they will
pay for technical support from a company that will maintain it for

them.

Component1 | 1.2.2| Application generation

Key question: What are the considerations for a school between choosing an open or closed

learning platform?

Closed Source \/3’ Open Source

e
o 2Ubung
N Ps U Gymbian
% Linux .. 0s
2 7 ”",)
- ‘7 suse B0
; pesae an>x01d
(2] 2\l maemo gz
Wind: 4 S
SEGTLe @
- H e L v -
LS A e L% MeeGo

Open

The source code is publicly available
Application is free

Licence allows code to be copied and modified
Lesz polished interface

Written by expert volunteers

Documentation and fechnical support limited

Arguably less secure as the source code can be
deliberately examined for weaknesses and taken
advantage of.

Counter argument - popular open source applications
have hundreds of volunteers looking for security
flaws in the source code and are quickly patched, but
many people will still be using unpaiched
executables from their original binaries and never
install the |atest version.

Mo enforced deadlines as the code iz written by
volunteers

Lower costs of development as the programmers
work for free

Closed

Source code iz a trade secret

Application iz not free

Licence restriciz copying and modifying

Cuite polished to attract customers

Written by paid software programmers

Drocumentation usually good and support is formally
available

Arguably more secure as the source code is nof
available so weaknesses are not 5o apparent

Many applications automatically look for software
updates back to the vendor's servers. So fixes are
propagated rapidly to customers without any
technical knowledge required.

The company will have strict deadlines for
programmers to make new releases

Higher development cosis as programmers are paid

Component1 | 1.2.2| Application generation

Key question: How does a VB program become the binary code that a computer can execute?

Translator- These consist of assemblers, interpreters and compilers to convert source code into machine
code.,

Interpreter- This converts high level source code into machine code.

Compiler- Converts high level source code into object code then into machine code.
Assembler- Converts low level code directly into machine code.

Assemblers

* Convert low level languages directly into machine code

* Thereis a 1to 1 relationship

* Assembly code isn't very portable over platforms, as assembly code for one sever may not run on
another CPU

* Translates a program written in assembly language into machine code.

Instruciiom Takde Memary Table

ADT 11001001 NI 130100401
sUS 101ao1D RILIMIZ 010101100
MULT 10013001 TOT 110010001
onF 0101010
COMP | DOD11001

@ ADD NUNMA1
—-

Machine
code=binary

M 11()01001 100100101

Interpreters and compilers
* Convert high level code such as VB, python and C#
* Have a one to many relationship(1 line of source code = many lines of machine code)

Component1 | 1.2.2| Application generation

Key question: How does a VB program become the binary code that a computer can execute?

Interpreters Compiler

* Source code ---machine code * Source code---object---machine code

* Good for debugging * (Canbeslow

* Runsone line of code at a time * Is more compatible with platforms

* Stops at first error * Object code is faster

* Some security issues * For an update source code is changed then the

* Can beslower object code is

* Good for long large blocks of code * Not good for debugging and it runs code all at once

* Takes one line of code, translates it, then * Takes source code, translates it all into object code
runs it right away. before allowing it to run

Object Code
ntermediate de
Compiler
— —
I
|
I
I ’
* 4
7’
”
Error -
-
Messages o A
i

Component1 | 1.2.2| Application generation

Key question: What is the purpose of a linker?

In compilation, we have a group of object files and libraries. These need to be
combined together to create a functioning program. The program that does
this is called the linker.

The linker is provided with a text file listing all of the object files and libraries
that need to be connected together. This text file is called a 'make file', and is
generally produced by the compiler automatically.

The result is an executable file - a machine code
translation of the full program that can now be
understood and carried out by the CPU.

CODE
LIBRARY

W

EXECUTABLE FILE

OBJECTFILE1 OBJECT FILE 2 OBJECTFILE3

Component1 | 1.2.2| Application generation

Key question: What is the purpose of a loader?

After an executable file has been created, it has to be loaded into main

memory in order to run it. This is done by a utility program within the
operating system called a loader.

The loader is part of the memory segmentation role
of the operating system. It first creates a code
segment to hold the program itself, then it creates a
data segment for the constant and variables it is Lo s
going to use and also a stack segment for handling

procedure calls. DATA SEGMENT

RAM Main Memory

Highest memory address 1

STACK SEGMENT

CODE SEGMENT

The machine code of the executable file defines the

memory addresses of each line of code relative to one
another, allowing it to jump from one point to another
according to the program flow. ﬁ

LOADER

Address location 0

One of the duties of the loader is to translate these
'relative addresses' into 'absolute addresses', pointing
the CPU to the exact locations in main memory.

Executable file

https://teach-ict.com/2016/A_Level_Computing/OCR_H446/1_2_software/121_operating_systems/memory_management/miniweb/pg2.php

Component1 | 1.2.2| Application generation

No need to write some procedures from scratch
which saves time.

Because the procedures have already been tested,
they are unlikely to contain errors.

The application itself can remain small and
compact.

Allows code to be shared with other applications
that make use of the same procedures.

An external library procedure can be updated
without needing to re-compile the application.
Library functions can be written in the most
efficient language for the job.

Library routines are connected to the program using
a linker.

The addresses of library routines are handled by the
loader when the program is run.

Key question: What are the advantages of function libraries to a programmer?

X The library has to be
well-written and robust
or it will impair all
applications making use
of it.

X Specialist libraries for
engineering, science
and finance can be very
expensive.

X For run-time loading
the library has to be
present.

Component1 | 1.2.2| Application generation

Typical exam questions

1. State two pieces of utility software a secondary school would need to install on its computer systems. For each piece of software justify why it would be
needed. [6]

Utility software 1:
Justification:
Utility software 2:
Justification:

2. One of the stages of code generation by a compiler is optimisation. Describe what optimisation does. [2]

3. Explain why interpreters are used in a computer system. [2]

4. Interpreters and Compilers are both examples of Translators. Explain one way in which they are similar and one way in which they differ. [4]

Component1 | 1.2.2| Application generation

Target: Overall grade:

Minimum expectations & learning outcomes

O Terms 58-74 from your A Level Key Terminology should be included and formatted.
O You must describe several examples of application and utility software.
O You must include a clear comparison (e.g. in table form) of the advantages and disadvantages of open vs closed source software.
O You must include a diagram that shows the relationship between the following terms: Translators, Interpreters, Compilers, Assemblers,
Linkers, Loaders, Libraries, Inmediate Code, Source Code, Machine Code, Object Code
O You must explain what happens at each stage of the compilation process including lexical and syntax analysis.
O You must explain at least two scenarios in which an interpreter and a compiler might be used.
O You must identify the advantages of using library routines to the programmer and explain why a linker is needed.
O Answer the exam questions.
Feedback
Breadth Depth Presentation Understanding
O All O Analysed O Excellent O Excellent
O Most O Explained O Good O Good
0 Some O Described O Fair O Fair
O Few O Identified O Poor O Poor

Comment & action required

Component1 | 1.2.2| Application generation

Reflection & Revision checklist

Confidence

Clarification

®O0

®00

®O0
®O0

®O0
00
@O0

®O0
®O0

®00
®O0
®O0

®O0

®00
®O0

Candidates need to understand the purpose of applications, and should have knowledge and experience of a range of different application software
(for example database, word processor, web browser, graphics manipulation etc.).

Candidates should be able to recommend the use of specific and generic applications for given scenarios, justifying their use and function(s) for a
scenario.

Candidates need to understand the purpose and role of utility software in a computer system.

Candidates should be familiar with a range of utility software (e.g. disk defragmentation, file management, device driver, system cleanup, security etc.)

Candidates need to be able to explain the differences between open and closed source software, the benefits and drawbacks to creator and user of
each of the licensing models, and be able to recommend which is used (with justification) for a specific scenario.

Candidates need to understand the need for translators when writing programs.

Candidates need to have knowledge of the differences in operation of interpreters and compilers, from these they need to be able to assess the
benefits and drawbacks of using each type, and recommend with justification which should be used in a specific scenario.

Candidates need to understand the role of an assembler and how it differs from interpreters and compilers.

Candidates need to understand that there are a number of stages involved in compilation.

Candidates need to understand how lexical analysis works and how the code is converted into tokens with the removal of unnecessary elements (e.g.
comments and whitespace).

Candidates need to understand how syntax errors are identified and reported at the end of the syntax analysis.

Candidates need to understand how the abstract syntax tree will be fed into the next stage of code generation, and that the object code is then
created.

Candidates need to understand why optimisation is important and how the results of lexical analysis feeds into syntax analysis, and how the tokens are
checked to ensure they meet the during (and after) code generation.

Candidates need to understand what code libraries are, how they are used and the benefits and drawbacks from using libraries.

Candidates should have experience of using libraries to write programs.

