
Component 1 | 1.2.2| Application generation

Specification & learning objectives

A Level Specification point description

1.2.2a The nature of applications, justifying suitable applications for a specific purpose

1.2.2b Utilities

1.2.2c Open source vs Closed source

1.2.2d Translators: interpreters, compilers and assemblers

1.2.2e Stages of compilation (Lexical analysis, Syntax analysis, Code generation and Optimisation)

1.2.2f Linkers and loaders and use of libraries

Resources

PG Online textbook page ref: 39-50

Hodder textbook page ref: 97-99, 107-115

CraignDave videos for SLR 5

https://www.youtube.com/watch?v=gIzbuiSnuUA&list=PLCiOXwirraUA9EgGVmuqzxonorZHPKNJN

Component 1 | 1.2.2| Application generation

Component 1 | 1.2.2| Application generation

Component 1 | 1.2.2| Application generation

Key question: In what ways do typical businesses use applications software?

Although open source software is very popular with private citizens, open source applications are
also widely used in commercial organisations. Businesses do this when it makes commercial sense
to do so. This usually means the open source applications they choose to use are mature, stable
and well supported.

A typical web server could be running:-
• Apache (open source web server application - approx 50% of all web sites use this)
• MySQL (database application)
• PHP (web programming language)
• Linux (open source operating system)

For example web sites are hosted on fully commercial servers that are
maintained under contract - they are not free! But at the same time, the
software applications running on the server may be open source.

Non-technical businesses in general do not want the burden of
maintaining and updating open source software and so they will

pay for technical support from a company that will maintain it for
them.

Component 1 | 1.2.2| Application generation

Key question: What are the considerations for a school between choosing an open or closed
learning platform?

Component 1 | 1.2.2| Application generation

Key question: How does a VB program become the binary code that a computer can execute?

Component 1 | 1.2.2| Application generation

Key question: How does a VB program become the binary code that a computer can execute?

Component 1 | 1.2.2| Application generation

Key question: What is the purpose of a linker?

In compilation, we have a group of object files and libraries. These need to be
combined together to create a functioning program. The program that does
this is called the linker.

The linker is provided with a text file listing all of the object files and libraries
that need to be connected together. This text file is called a 'make file', and is
generally produced by the compiler automatically.

The result is an executable file - a machine code
translation of the full program that can now be

understood and carried out by the CPU.

Component 1 | 1.2.2| Application generation

Key question: What is the purpose of a loader?

After an executable file has been created, it has to be loaded into main
memory in order to run it. This is done by a utility program within the
operating system called a loader.

The loader is part of the memory segmentation role
of the operating system. It first creates a code
segment to hold the program itself, then it creates a
data segment for the constant and variables it is
going to use and also a stack segment for handling
procedure calls.

The machine code of the executable file defines the
memory addresses of each line of code relative to one
another, allowing it to jump from one point to another
according to the program flow.

One of the duties of the loader is to translate these
'relative addresses' into 'absolute addresses', pointing
the CPU to the exact locations in main memory.

https://teach-ict.com/2016/A_Level_Computing/OCR_H446/1_2_software/121_operating_systems/memory_management/miniweb/pg2.php

Component 1 | 1.2.2| Application generation

Key question: What are the advantages of function libraries to a programmer?

 No need to write some procedures from scratch
which saves time.

 Because the procedures have already been tested,
they are unlikely to contain errors.

 The application itself can remain small and
compact.

 Allows code to be shared with other applications
that make use of the same procedures.

 An external library procedure can be updated
without needing to re-compile the application.

 Library functions can be written in the most
efficient language for the job.

 Library routines are connected to the program using
a linker.

 The addresses of library routines are handled by the
loader when the program is run.

X The library has to be
well-written and robust
or it will impair all
applications making use
of it.
X Specialist libraries for
engineering, science
and finance can be very
expensive.
X For run-time loading
the library has to be
present.

Component 1 | 1.2.2| Application generation

Typical exam questions

1. State two pieces of utility software a secondary school would need to install on its computer systems. For each piece of software justify why it would be
needed. [6]

Utility software 1:

Justification:

Utility software 2:

Justification:

2. One of the stages of code generation by a compiler is optimisation. Describe what optimisation does. [2]

3. Explain why interpreters are used in a computer system. [2]

4. Interpreters and Compilers are both examples of Translators. Explain one way in which they are similar and one way in which they differ. [4]

Component 1 | 1.2.2| Application generation

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 58-74 from your A Level Key Terminology should be included and formatted.

 You must describe several examples of application and utility software.

 You must include a clear comparison (e.g. in table form) of the advantages and disadvantages of open vs closed source software.


You must include a diagram that shows the relationship between the following terms: Translators, Interpreters, Compilers, Assemblers,
Linkers, Loaders, Libraries, Immediate Code, Source Code, Machine Code, Object Code

 You must explain what happens at each stage of the compilation process including lexical and syntax analysis.

 You must explain at least two scenarios in which an interpreter and a compiler might be used.

 You must identify the advantages of using library routines to the programmer and explain why a linker is needed.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Component 1 | 1.2.2| Application generation

Reflection & Revision checklist

Confidence Clarification


Candidates need to understand the purpose of applications, and should have knowledge and experience of a range of different application software

(for example database, word processor, web browser, graphics manipulation etc.).


Candidates should be able to recommend the use of specific and generic applications for given scenarios, justifying their use and function(s) for a

scenario.

 Candidates need to understand the purpose and role of utility software in a computer system.

 Candidates should be familiar with a range of utility software (e.g. disk defragmentation, file management, device driver, system cleanup, security etc.)


Candidates need to be able to explain the differences between open and closed source software, the benefits and drawbacks to creator and user of

each of the licensing models, and be able to recommend which is used (with justification) for a specific scenario.

 Candidates need to understand the need for translators when writing programs.


Candidates need to have knowledge of the differences in operation of interpreters and compilers, from these they need to be able to assess the

benefits and drawbacks of using each type, and recommend with justification which should be used in a specific scenario.

 Candidates need to understand the role of an assembler and how it differs from interpreters and compilers.

 Candidates need to understand that there are a number of stages involved in compilation.


Candidates need to understand how lexical analysis works and how the code is converted into tokens with the removal of unnecessary elements (e.g.

comments and whitespace).

 Candidates need to understand how syntax errors are identified and reported at the end of the syntax analysis.


Candidates need to understand how the abstract syntax tree will be fed into the next stage of code generation, and that the object code is then

created.


Candidates need to understand why optimisation is important and how the results of lexical analysis feeds into syntax analysis, and how the tokens are

checked to ensure they meet the during (and after) code generation.

 Candidates need to understand what code libraries are, how they are used and the benefits and drawbacks from using libraries.

 Candidates should have experience of using libraries to write programs.

