
Component 1 | 1.2.4| Types of programming language

Specification & learning objectives

A Level Specification point description

1.2.4a The need for and characteristics of a variety of programming paradigms

1.2.4b Procedural languages

1.2.4c Assembly language (including following and writing simple programs with the Little Man Computer Instruction set)

1.2.4d Modes of addressing memory (immediate, direct, indirect and indexed)

1.2.4e
Object-oriented languages with an understanding of classes, objects, methods, attributes, inheritance, encapsulation

and polymorphism

Resources

PG Online textbook page ref: 64-73

Hodder textbook page ref: 84-96

CraignDave videos for SLR 7

https://www.youtube.com/watch?v=tTHQuMsxU_8&list=PLCiOXwirraUA-oG_EN3G46jVG0E_G4eBt

Component 1 | 1.2.4| Types of programming language

Key question: What do we mean by the term programming paradigm?

There are many different programming languages available. It is useful to be able to group
programming languages, so that they can be discussed and compared.
A common way of grouping programming languages is by their general approach to solving
problems. These approaches, or 'paradigms', are often specialised.

Low level languages

Functional languages

Procedural languages

Declarative languages

Object-orientated
languages

Component 1 | 1.2.4| Types of programming language

Key question: What are the features of procedural languages?

One of the most common programming paradigms is the idea of 'procedural'

languages. Procedural languages group sets of instructions together into

subroutines or functions. Sequence, selection, and iteration are key components of

writing code in procedural languages.
This is a very powerful and versatile approach to programming. Examples are:

Procedural

languages

are imperative.

Programs are given

a list of explicit

instructions, called

an algorithm, telling

them exactly how to

carry out a task.

Procedural

languages

are sequential

.

This means

that the order

of instructions

is important.

Examples of Procedural

languages:

C, Pascal, FORTRAN, COBOL

Variable y is being set

Enters a loop

So the procedural language is

precisely defining what the computer

should be doing step by step.

Component 1 | 1.2.4| Types of programming language

Key question: What are the features of procedural languages?

Component 1 | 1.2.4| Types of programming language

Key question: What are the features of assembly language?
• Low level languages are tied to specific CPU families. Each CPU family

requires its own low level language. Low level languages are almost (but not

quite) machine code.

• 'Assembly language' is an example of a low level programming language.

• CPU chip makers create assembly languages themselves. They teach

programmers how to best use their assembly language when writing code for

their family of CPUs.

• Some features of Low Level languages include:

•'Mnemonics' are used as

programming code such as MOV or

ADD.

•They are CPU specific,

making direct use of

internal registers.

•Labels are used as

reference points to allow the

code to jump from one part to

another.

•Many different

memory modes can

be used.

Component 1 | 1.2.4| Types of programming language

Annotated example of an assembly program.

Component 1 | 1.2.4| Types of programming language

Key question: What are immediate, direct, indirect, indexed and relative memory addressing?

Intermediate Addressing

 Sometimes called intermediate

operand

 The operand of the instruction is

the actual value to be used e.g. ADD

20 adds the value 20 not address 20

 It removes the I/O operation of

loading from memory, so it is a very

efficient mode of addressing.

 Can only use constant values

Direct Addressing

 The address in memory is the

operand of the instruction

 E.g. ADD 20 means add the

contents of location 20 to the

accumulator

 Advantage is that it requires few

CPU cycles compared to the later

modes

 Disadvantage is that It’s inefficient

to address many pieces of data to

perform the same operation .

Indirect Addressing

 The operand is the address in memory

that contains the real address in

memory.

 E.g. Add 20 would go to address 20

and find that it might have number

4000 in it which is the real address of

the data.

 Useful as it allows larger addresses

than normal to be used

 However, indirect Addressing uses

many CPU cycles making it inefficient

in some use cases.

Indexed Addressing

 A recursive method where 1

instruction is run many times on

multiple data

 This uses an additional CPU

register called the index register.

 The index register is added to the

first item in the array’s address to

find the current address

 Bad for small data amounts (lots of

CPU cycles!)

 Efficient for arrays and similar.

Relative Addressing

 Relative addressing means that the

next instruction to be carried out is

an offset number of locations

away, relative to the address of

the current instruction.

Component 1 | 1.2.4| Types of programming language

Key question: What are the features of object orientated languages?

Object Oriented Programming (OOP) languages use templates, called classes, to define
items that they are working with. It is easier to think about these using examples.
In video games, you often play a character with a set of attributes, like this:

The "adventurer"

template, or class,

has a number

of attributes.

These are qualities

that define objects

within the class.

In this case, name,

health, mana, etc. Each

of those attributes has

a value. 20 health, or 7

speed, for example.

•Classes are

templates.

•Classes have a set

of attributes.

•Objects within a

class share the

same set of

attributes.

•Objects within a

class can have

different values for

their attributes.

Component 1 | 1.2.4| Types of programming language

Annotated example of an object-oriented program.

MASTER MAGIC GOBLIN

Properties: Health

Move rate

Colour

Strength

Spells

Methods: Walk()

Climb()

CastSpell()

*TeachSpell()

MAGIC GOBLIN

Properties: Health

Move rate

Colour

Strength

*Spells

Methods: Walk()

Climb()

*CastSpell()

GOBLIN

Properties: Health

Move rate

Colour

Strength

Methods: Walk()

Climb()

WORKER GOBLIN

Properties: Health

Move rate

Colour

Strength

*Tools

Methods: Walk()

Climb()

*BuildWall()

*BuildHouse()

*MineGold()

Component 1 | 1.2.4| Types of programming language

Typical exam questions

The following assembly code is written for the Little Man Computing instruction set.

INP
STA arg1
INP
ADD arg1
OUT
INP
SUB arg1
OUT
HLT

arg1 DAT

1. State the output of this program when the inputs are 10, followed by 5 followed by 7. [1]

2. Explain what this program is doing. [4]

3. Explain, with the aid of a diagram what is meant by the term inheritance. [4]

Component 1 | 1.2.4| Types of programming language

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 81-106 from your A Level Key Terminology should be included and formatted.

 You must describe the paradigms procedural, assembly and object-oriented.

 You must include an annotated example of a procedural program.

 You must include an annotated example of an assembly language program written using the LMC Instruction Set.

 You must include a comparison of immediate, direct, indirect and indexed addressing and how this relates to RISC & CISC architectures.


You must include some illustrations that explain the main concepts of object orientated programming including class, object, inheritance, public attributes,
private attributes, methods, encapsulation and polymorphism.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Component 1 | 1.2.4| Types of programming language

Reflection & Revision checklist

Confidence Clarification


Candidates need to understand that there are a variety of types of programming paradigms such as procedural, OOP, low-level, and that each has its

strengths and weaknesses in specific scenarios, topics or areas.

 Candidates need to have knowledge and experience of using a procedural programming language for example Python, VB.NET etc.


Candidates need to be experienced in using procedural programming features such as (but not limited to) variables, constants, selection, iteration,

sequence, subroutines, string handling, file handling, Boolean and arithmetic operators.

 Candidates need to be able to read, trace, amend and write procedural program code.


Candidates need to have an understanding of the purpose and need for assembly language. They need to be familiar with the instructions given in

Appendix 5d. They should be able to read, write, trace and amend programs written in the Little Man Computer language.

 Candidates need an understanding of addressing, which should be integrated with assembly language.


Candidates should have experience of using immediate, direct, indirect and indexed addressing in the writing, reading and tracing of programs written

in assembly language.


Candidates need to understand object-oriented code (as specified in the pseudocode guide). They need to have an understanding of classes, objects,

attributes and methods. They need to understand the difference between private and public attributes and methods.

 Candidates need to understand encapsulation and the use of get and set methods to access private attributes.

 Candidates need to understand the purpose and principles of inheritance.

 Candidates need to have an understanding of polymorphism and how it can be used within a program.

 Candidates need to be able to read, trace, amend and write code that makes use of these object-oriented

