

The normal Distribution

A continuous probability distribution that can be used I to model variables that are more likely to be grouped I around a central value than at extremities.

THE NORMAL DISTRIBUTION CURVE

symmetrically bell-shaped, with asymptotes at each end 68% percent of data is within one s.d of μ 95% percent of data is within two s.d of μ 99.7% percent of data is within three s.d of μ

THE NORMAL DISTRIBUTION TABLE

To find z-values that correspond to given probabilities, ie. P(Z > z) = p use this table:

p	z	p	z
0.5000	0.0000	0.0500	1.6449
0.4000	0.2533	0.0250	1.9600
0.3000	0.5244	0.0100	2.3263
0.2000	0.8416	0.0050	2.5758
0.1500	1.0364	0.0010	3.0902
0.1000	1.2816	0.0005	3.2905

CALCULATORS FOR NORMAL DISTRIBUTION

 Casio fx-99IEXmenu 7 - Mormal PD, normal CD or Inverse normal

Casio CG50:

Menu 2 - F5 Dist - FI normal - Mpd, ncd or Invn
Choose extremely large or small values for upper , or lower limits as appropriate

1. The area under a continuous probability distribution curve $=1$

2 If X is a normally distributed random variable, with population mean, μ, and population variance, σ^{2} we say $X \sim n\left(\mu, \sigma^{2}\right)$
3. To find an unknown value that is a limit for a given probability value, use the inverse normal distribution function on the calculator.
4. The notation of the standard normal variable Z is $Z \sim n\left(0,1^{2}\right)$
5. The formula to standardise X is $Z=\frac{x-\mu}{\sigma}$
6. The notation for the probability $\mathrm{P}(\mathrm{Z}<\mathrm{a})$ is $\phi(\mathrm{a})$
7. To find an unknown mean or standard deviation use coding and the standard normal variable, Z.
8. Conditions for a Binomial distribution to be approximated by a Mormal distribution:
n must be large
p must be close to 0.5
9. The mean calculated from an approximated Binomial distribution is $\mu=n p$
10. The variance calculated from an approximated Binomial distribution is $\sigma^{2}=n p(1-p)$
II. Apply a continuity correction when calculating probabilities from an approximated Binomial distribution using limits so that the integers are completely included or excluded, as required

12 The mean of a sample from normally distributed population, is distributed as

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { then } Z=\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}
$$

13. Skewed data is nOT 'normal'
