

Specification & learning objectives

<u>A Level</u>	Specification point description
1.4.3a	Define problems using Boolean logic
1.4.3b	Manipulate Boolean expressions, including the use of Karnaugh maps to simplify Boolean expressions
1.4.3c	Use the following rules to derive or simplify statements in Boolean algebra: De Morgan's Laws, distribution, association, commutation, double negation
1.4.3d	Using logic gate diagrams and truth tables
1.4.3e	The logic associated with D type flip flops, half and full adders

<u>Resources</u>

PG Online textbook page ref: 223-241

Hodder textbook page ref: 174-182

CraignDave videos for SLR 15

Key question: What are the Boolean operators and their associated logic gate symbols?

Logic gate - A processing un	nit which pro	cesses inp	uts to give a	
set output.				
Boolean value - An output w	hich determ	nines whet	her a	
statement or value is True (1) or False ((0).		
And (^) gate	Input A	Input B	Output	
A	0	0	0	
- • •	0	1	0	
	1	0	0	
	1	1	1	
	Input A	Input B	Output	
Or (V) gate		0		
	0	1	1	
^) z	1	0	1	
	1	1	1	
XOR (\oplus Y) gate	Input A	Input B	Output	
	0	0	0	
	0	1	1	
)))	1	0	1	
B	1	1	0	
Not (¬) gate	Input		Output	
	0		1	
Outruit			0	
Input	1		0	
Input	1		0	
NAND gate	1 Input A	Input B	Output	
NAND gate	1 Input A 0	Input B O	Output 1	
NAND gate	1 Input A 0 0	Input B 0 1	Output 1 1	
NAND gate	1 Input A 0 0 1	Input B 0 1 0	0utput 1 1 1	

Key question: How do you translate a logic gate diagram into its associated truth table and Boolean expression and vice versa?

 $(A \land D) \lor (B \land D) \lor (A \land \neg B \land C \land D)$

 $(A \land D)$ $(B \land D)$ CD CD AB AB 00 01 11 10 00 01 11 10 These two rows 00 00 represent A 01 1 1 01 being true 1 11 11 1 1 1 10 1 10 1 1 1 Where the rows

overlap is the parts which represent A ^ D

These two columns represent D being true

CD AB		00	01	11	10
	00				
	01				
	11			1	
	10			1	

 $(A \land \neg B \land C \land D)$

This can be simplified to (B ^ D) V (A ^ D)

C A	D B	00	01	11	10
	00				
	01		1	1	
	11		1	1	
	10		1	1	

Key question: How can Karnaugh maps be used to simplify Boolean expressions?

Karnaugh Map	A Karnaugh map provides an alternative way of simplifying Boolean expressions which is often easier than using Boolean algebra for those involving up to 4 variables. Groupings are in groups of 1, 2, 4 and can go through walls and corners.
Two variable problem	
Three variable problem	A ^{BC} 00 01 1110 0 1
Four variable problem	A _B 00 01 11 10 00 01 11 10

Key question: What are the rules for simplifying Boolean expressions?

	$A \wedge A = A$
	$A \lor A = A$
	$A \lor \neg A = 1$
Simple Boolean	$A \land \neg A = 0$
identities	$1 \lor A = 1$
	$1 \land A = A$
	$0 \lor A = A$
	$0 \wedge A = 0$
	$A \wedge B = B \wedge A$
Commutative	$A \lor B = B \lor A$
	$(A \lor B) \lor C = A \lor (B \lor C)$
Associative	$A \land (B \land C) = (A \land B) \land C$
	$A \land (B \lor C) = (A \land B) \lor (A \land C)$
Distributive	$A \lor (B \land C) = (A \lor B) \land (A \lor C)$
Double Negation	$\neg \neg A = A$
	$\neg (A \lor B) = \neg A \land \neg B$
De Morgan's Laws	$\neg (A \land B) = \neg A \lor \neg B$

Typical exam questions

1. Simplify the following expression: [6]

ΑΛΒΛϹVΑΛ¬ΒΛCVΑΛΒΛ¬C

2. Complete the truth table for the following logic diagram. [8]

Α	В	С	D	E	Z

3. State the three different logic gates used in the logic diagram above. [3]

Target:

Overall grade:

Minimum expectations & learning outcomes

Terms 187-199 from your A Level Key Terminology should be included and formatted.
You must show the general rules for simplification of Boolean expressions.
You must include annotated examples of a two, three and four input Karnaugh Map, and show how it is used to simplify a Boolean expression.
You must include an example of each of the following rules and show clearly how they are used to help simply Boolean statements: De Morgan's Laws, distribution, association, commutation, double negation.
You must show a series of logic gate diagrams and their associated truth tables.
You must illustrate D type flip flops, half and full adders explaining where they are used in a CPU.
Answer the exam questions.

Feedback

<u>Breadth</u>	<u>Depth</u>	Presentation	<u>Understanding</u>
	□ Analysed	Excellent	Excellent
□ Most	Explained	□ Good	□ Good
□ Some	Described	Fair	🗆 Fair
Few	□ Identified	D Poor	D Poor

Comment & action required

Reflection & Revision checklist

<u>Confidence</u>	<u>Clarification</u>
$\mathfrak{S} \oplus \mathfrak{S}$	Candidates should be familiar with AND, OR, NOT and XOR. Candidates should be familiar with the logic of each Boolean operator, and the truth tables.
$\mathfrak{S} \oplus \mathfrak{S}$	Candidates should be able to construct logic gate diagrams from a Boolean expression and vice versa.
8 😄 😳	Candidates should be able to construct truth tables from Boolean expressions and logic gate diagrams.
890	Candidates should have an understanding that Boolean expressions can be simplified and should have experience of simplifying expressions using Karnaugh maps.
$\mathfrak{S} \cong \mathfrak{S}$	Candidates should be able to create, complete and interpret Karnaugh maps to simplify Boolean expressions.
$\mathfrak{S} \cong \mathfrak{S}$	Candidates should be aware of the given De Morgan's laws and should be able to apply these to a Boolean statement.
800	Candidates should have experience of manipulating and simplifying Boolean statements using these rules of distribution, commutation, association and double negation.
800	Candidates need to understand the purpose and principles of D type flip flops and how and where they are used in a computer. They should be able to recognise how they can be triggered by a clock pulse.
	Candidates are not expected to memorise the logic gates that make up a D-type flip flop.
800	Candidates need to understand the purpose and function of an adder circuit, and the difference between a half and full adder. They should be able to recognise and draw the logic gates and truth tables for full and half adders.