YEAR 7 - APPLICATION OF NUMBER

Solving problems with addition and subtraction

@whisto maths

What do I need to be able to do?

. | By the end of this unit you should be able to:

- Understand properties of addition/subtraction
- Use mental strategies for addition/subtraction
- Use formal methods of addition/Subtraction for integers
- Use formal methods of addition/Subtraction for decimals
- Solve problems in context of perimeter
- Solve problems with finance, tables and timetables
- Solve problems with frequency trees
- Solve problems with bar charts and line charts

Keywords

Commutative: changing the order of the operations does not change the result

Ossociative: when you add or multiply you can do so regardless of how the numbers are grouped

Inverse: the operation that undoes what was done by the previous operation. (The opposite operation.)

! Placeholder: a number that occupies a position to give value

Perimeter: the distance/length around a 2D object

Polyaon: a 2D shape made with straight lines

i Balance: in financial questions — the amount of money in a bank account

I Credit: money that goes into a bank account

Debit: money that leaves a bank account

Oddition/Subtraction with integers

Modelling methods for addition/subtraction

- Bar models
- Number lines
- Part/ Whole diagrams

Oddition is commutative

6 + 3 = 3 + 6

The order of addition does not change the result

Subtraction the order has to stay the same

- Number lines help for addition and subtraction
- Working in 10's first aids mental addition/ subtraction
- Show your relationships by writing fact families

Formal written methods

_	IOI W	ricio	(11111	CUIDUS				
	Н	Т	О			Н	Т	0
	1	8	7			4	2	7
	5	4	2		_	2	4	9

Remember the place value of each column You may need to move 10 ones to the ones column to be able to subtract

Oddition/ Subtraction with decimals

The decimal place acts as the placeholder and aligns the other values

Revisit Fraction — Decimal

equivalence 5.43 + 0.8

Solve problems with perimeter

Perimeter is the length around the outside of a polygon

The triangle has a perimeter of 25cm

Find the length of x8cm + 8cm + xcm = 25cm

16cm + xcm = 25cmxcm = 9cm

Solve problems with finance

Credit — Money coming into an account

Debit — Money leaving an account

Money uses a two decimal place system. 142 on a calculator represents £1420

Check the units of currency — work in the same unit

Tables and timetables

<u>Distance tables</u>

This shows the distance betweenGlasgow and London.

It is where their row and column intersects

Bus/ Train timetables

Harton	1005	1045	1130	
Bridge	1024	1106	1147	
Aville	1051	1133	1205	
Ware	1117	1202	1233	'

Each column represents a journey, each row represents the time the 'bus' arrives at that location

TIME CALCUALTIONS — use a number line

Two-way tables

Where rows and columns intersect is the outcome of that action.

<u>Frequency trees</u>

60 people visited the zoo one Saturday moming

26 of them were adults. 13 of the adult's favourite animal was an elephant. 24 of the children's favourite animal was an elephant.

> The overall total "60 people"

Our frequency tree is made up from <u>part-whole</u> models. One piece of information leads to another

be taken from the completed

e.g. 34 children visited the zoo

| <u>Bar and line charts</u>

Use addition/subtraction methods to extract information from bar charts.

eg Difference between the number of students who waked and took the bus Walk frequency — bus frequency

When describing changes or making predictions.

- Extract information from your data source
- Make comparisons of difference or sum of values.
- Put into the context of the scenario