YEAR 8 - ALGEBRAIC TECHNIQUES..

@whisto_maths

Indices

What do I need to be able to do?

Bu the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Multiply expressions with indices
- Divide expressions with indices

Term Term

Expression

- Know the addition law for indices
- Know the subtraction law for indices

Keywords

Base: The number that gets multiplied by a power

Power: The exponent — or the number that tells you how many times to use the number in multiplication. **Exponent**: The power — or the number that tells you how many times to use the number in multiplication

Indices: The power or the exponent.

Coefficient: The number used to multiply a variable

Simplifu: To reduce a power to its lowest term

Product: Multiply

Oddition/Subtraction with indices Coefficient $5x^{2} + 4x^{4}$

Each square represents x^2 and each cube. represents x4

Only similar terms can be simplified If they have different powers, they are unlike terms

$$5x^2 + 2x^2 \longrightarrow 7x^2$$

Multiply expressions with indices

$$5tx9t$$

$$\equiv 5xtx9xt$$

$$\equiv 5x9xtxt$$

$$\equiv 45t^{2}$$

There are often misconceptions with this calculation but break down the powers

Divide expressions with indices

$$\frac{24}{36} \longrightarrow \frac{\cancel{\cancel{X}} \cancel{\cancel{X}} \cancel{\cancel{X}$$

Cross cancelling factors shows cancels the expression

This expression cannot be divided 23 a⁷ y² (cancelled down) because there are no common factors or similar terms

Oddition/Subtraction laws for indices

The base number is all the same so the terms can be simplified

Oddition law for indices

 $a^m \times a^n = a^{m+n}$

$$3^5 \div 3^2 \longrightarrow 3^3$$

Subtraction law for indices

$$a^m \div a^n = a^{m-n}$$