YEAR 8 - ALGEBRAIC TECHNIQUES..

@whisto maths

Sequences

The **term** in

has 7 squares"

position 3

Graphically

What do I need to be able to do?

By the end of this unit you should be able to:

- Generate a sequence from term to term or position to term rules
- Recognise anthmetic sequences and find the nth term
- Recognise geometric sequences and other sequences that arise

l Keywords

! Sequence: items or numbers put in a pre-decided order

Term: a single number or variable

Position: the place something is located

Linear: the difference between terms increases or decreases (+ or -) by a constant value each time **Non-linear**: the difference between terms increases or decreases in different amounts, or by x or ÷

Difference: the gap between two terms

Orithmetic: a sequence where the difference between the terms is constant

Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero number.

Position: the place in the sequence

Term: the number or variable

(the number of squares in each image)

Position

Sequence in a table and araphically

Linear and Non Linear Sequences

 $\ensuremath{\text{\textbf{Linear}}}$ $\ensuremath{\text{\textbf{Sequences}}}$ – increase by addition or subtraction and the same amount each time

Non-inear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci

- Do not plot as straight lines when modelled graphically
- The differences between terms can be found by addition, subtraction, multiplication or division.

 $\label{eq:continuity} \mbox{Fibonacci Sequence} - \mbox{look out for this type of sequence}$

0 | | 2 3 5 8 ...

Each term is the sum of the previous two terms.

Sequences from algebraic rules This is substitution

3n + 7

This will be linear - note the sinale

This will be linear - note the single This is not linear as there is a power of n. The values increase at a power for n

power of n. The values increase at a constant rate

2n - 5 — Substitute the number of the term you are looking for in place of 'n'

eg

1st term = 2 (1) - 5 = -3 2nd term = 2 (2) - 5 = -1

 100^{th} term = 2 (100) - 5 = 195

Checking for a term in a sequence Form an equation

Is 201 in the sequence 3n - 4?

 $\sqrt{3n-4} = 201$

Olgebraic rule

Solving this will find the position of the term in the sequence. I ONLY an integer solution can be in the sequence. I

Because the terms increase by the same addition each time this is **linear** — as seen in the graph Misconceptions and comparisons Complex algebraic rules $(2n)^{2}$ 2 times n then square the answei 2 tijmes whatever n squared is |st term = $(2 \times 1)^2 = 4$ |st term = 2 x |2 = 2 2st term = (2 x 2)2 = 16 2st term = 2 x 22 = 8 100^{th} term = $(2 \times 100)^2$ = 40000 100^{th} term = 2×100^{2} = 2000 st term = 1(1 + 5) = 6You don't need to $n(n + 5) \blacktriangleleft$ 2^{st} term = 2(2 + 5) = 14expand the

🕕 <u>Finding the algebraic rule</u>

This is the 4 \longrightarrow 4, 8, 12, 16, 20....

4n

7, 11, 15, 19, 22 ←

This has the same constant difference — but is 3 more than the original sequence

the original sequence 4n + 3

This is the constant difference between the terms

in the sequence

 100^{th} term = 100 (100 + 5) = 10500

This is the comparison (difference) between the original and new sequence