
J277 - 2.3 Producing robust programs

J277 - 2.3 Producing robust programs

Defensive design: Anticipating misuse

Division by zero.

Even with valid inputs there are a number of reasons why a program could crash. These should be trapped by the programmer with exception
handling code.

A user might also misinterpret the on-screen prompts, or enter data into the wrong input box. A programmer should plan for all possible eventualities.

Communication error.
E.g. lost connection to host.

Printer out of paper.
Printer out of ink.

Paper jam.

Out of disk space.
File not found.

End of file.
Invalid data in file.

Robust programming
Programs that function correctly shouldn't break or produce errors. Avoid these problems by using defensive design:

Anticipate and prevent
misuse by users.

Keep code well-
maintained.

Reduce errors by
testing.

J277 - 2.3 Producing robust programs

Defensive design: Authentication

The most common way of doing this is to
ask for a username and password. The
entered details are then checked against a
database containing valid accounts.

Confirming the identity of a user before allowing access. Passwords or biometrics are usually associated with a username.

reCaptcha is a method used to protect online forms against bots.
A bot can automatically submit data in online forms creating
spam. A robust program needs to identify the user as a human
and not another program. Often the user has to type the words
they see on-screen which are presented as pictures in a format
that would be difficult for a program to decipher, instead of text.

For high security sites such as financial services
'two-factor' authentication is becoming popular.
This means that after the user enters a valid user
name and password, the system sends an SMS
text 'authentication code' to the designated
mobile phone. They then have to enter this as
well.

Biometrics is method that checks some physical
feature of the authorised person such as their
fingerprint. The user puts their thumb on a
fingerprint entry device, the data is sent off to a
database and checked against their valid data.

J277 - 2.3 Producing robust programs

Defensive design: Input validation

Input validation: Checking if data meets certain criteria before passing it into a program.

J277 - 2.3 Producing robust programs

Maintainability

5. Use of sub-programs to separate parts of the
program.

Well maintained code is easier for other programmers to understand. They can change parts of
the code without causing problems elsewhere.

1. #Write comments to explain what is happening at each
stage.

2. Use indentation to make the program flow easier to see and show
selection and iteration code branches.

3. Use of whitespace to easily see where
functions begin and end.

4. Descriptive variable and function names.

J277 - 2.3 Producing robust programs

J277 - 2.3 Producing robust programs

The purpose and types of testing

Four main reasons why a program should be thoroughly tested before being given to a user:

To check the program
meets the requirements.

To ensure there are no
logic errors.

To check the program has
an acceptable performance
and usability.

Ensure unauthorised
access is prevented.

Performed whilst
the software is

being developed.

Iterative Testing Final/Terminal Testing

Performed at the
end of

development

This stage happens after the
individual sections or modules of the
system have been tested, to ensure
that the system works as a whole
and that it meets the requirements
of the project.

The programmer writes an individual
section of code or part of the project
and then tests it to ensure that it
functions correctly. It is likely that
errors will be detected, and these
are resolved before the next section
of the program is developed and
tested.

J277 - 2.3 Producing robust programs

J277 - 2.3 Producing robust programs

How to identify syntax errors

A syntax error occurs when code written does not follow the rules of the programming language.
Examples include:

• Misspelling a statement, eg writing pint instead of print

• Using a variable before it has been declared
• Missing brackets, eg opening a bracket but not closing it

How to identify logic errors

A logic error is an error in the way a program works. The program simply does not do what it is expected
to do.

• Logic errors can have many causes, such as:
• Incorrectly using logical operators, eg expecting a program to

stop when the value of a variable reaches 5, but using <5
instead of <=5

• Incorrectly using Boolean operators
• Unintentionally creating a situation where an infinite loop may

occur
• Incorrectly using brackets in calculations
• Unintentionally using the same variable name at different

points in the program for different purposes
• Referring to an element in an array that falls outside of the

scope of the array

J277 - 2.3 Producing robust programs

J277 - 2.3 Producing robust programs

Selecting and using suitable test data

Test data is data that is used to test whether or not a program is functioning correctly. Ideally, test data should
cover a range of possible and impossible inputs, each designed to prove a program works or to highlight any
flaws. Three types of test data are:

Normal data - typical,
sensible data that the
program should accept and
be able to process.

•Boundary data - valid data
that falls at the boundary
of any possible ranges,
sometimes known as
extreme data.

•Erroneous data - data that
the program cannot
process and should not
accept.

Types of test data
for a password
checking system:

J277 - 2.3 Producing robust programs

Selecting and using suitable test data

In September 2017, Twitter announced it was testing doubling the number of characters in a tweet from 140 to 280
characters. Twitter’s character limit is a holdover from the app’s early days when tweets were sent as texts, which were
limited to 160 characters. It has since become one of the product’s defining characteristics. A typical test table that could be
used:

Test No. No.
characters

input

Type of test Reason for the test

1 67 Normal data Check the new functionality doesn’t break the original working code.
Check the character counter updates correctly.

2 280 Boundary data Check the maximum number of characters.
Check the character counter updates correctly to 0.

3 281 Invalid data Check only tweets up to 280 characters are accepted.
Check the character counter updates correctly to negative number.

4 0 Invalid data A blank tweet should not be stored.

5 1 Boundary data Check the minimum number of characters.

