YEAR 11 — MULTIPLICATIVE REASONING

By the end of this unit you should be able to:	MathsWatch clip	Video tutorial
Use scale factors		
 Understand direct proportion 		
• Construct complex direct proportion equations (H)	199	<u>Corbett</u>
• Calculate with pressure & density	142	<u>Corbett</u> Corbett
 Understand inverse proportion 		
 Construct inverse proportion equations (H) 	<u>199</u>	<u>Corbett</u>
Solve ratio problems		

<u>Keywords</u>

Similar: same shape and angles, but a different size

Direct proportion: two quantities which remain in the same ratio at all times

Inverse proportion: a relationship in which one quantity increases as the other decreases

Linear: a direct proportion relationship — shown by a straight diagonal line on a graph

Varies directly: another was of saying 'direct proportion'

Constant of proportionality: the ratio between two quantities that are in proportion

Density: how much matter is in a particular volume of space, calculated as mass + volume

Pressure: the effect of an object's weight on a surface, calculated as force + area

YEAR 11 — GEOMETRIC REASONING

By the end of this unit you should be able to:	MathsWatch clip	Video tutorial
 Use angles at a point (R) 	<u>45</u>	<u>Corbett</u>
• Use angles in parallel lines & shapes (R)	120	<u>Corbett</u>
• Use interior & exterior angles in polygons (R)	123	<u>Corbett</u>
 Prove geometric facts 		<u>Corbett</u>
 Solve problems involving vectors (R) 	174 219	
• Use circle theorems (R) (H)		<u>Corbett</u>
• Circle theorem: Ongle between radius & chord (H)		
• Circle theorem: Ongle between radius & tangent (H)		
• Circle theorem: Two tangents from a point (H)		
• Circle theorem: Alternate segment theorem (H)		Corbett
• Pythagoras & trig ratios (H)	150b 168	Corbett Corbett Corbett

<u>Keywords</u>

Polygon: a 2D shape with straight sides

Regular: a shape with all side equal and all angles equal

Segment: the part of a circle cut off by a chord

Cyclic quadrilateral: put numbers in place of letters to find the value of an expression

Chord: a straight line connecting two points on a circles circumference

Bisect: cut into 2 equal parts

Tangent: a straight line which touches a circle at just one point

Hypotenuse: the side opposite the right angle in a right-angled triangle

YEAR 11 — ALGEBRAIC REASONING

y the end of this unit you should be able to:	MathsWatch clip	Video tutorial	
Simplify complex expressions			
• Find the rule for the nth term of a linear sequence (R)		<u>Corbett</u>	Solve
• Find the rule for the nth term of a quadratic sequence (R) (H)	213	<u>Corbett</u>	5x + 3y = 38
Use rules for sequences			$\frac{1}{2} = \frac{3}{2} = \frac{3}{2}$
 Solve linear simultaneous equations 	162	<u>Corbett</u>	5x + 2y = 24
• Solve simultaneous equations with one quadratic (H)	211	<u>Corbett</u>	
• Use formal algebraic proof (H)	193	Corbett	
• Use inequalities in two variables (H)	198	Corbett]!!

<u>Keywords</u>

Term: a single part of an expression, such as 2x or 3mp or 8 Expression: a combination of two or more terms separated by + or - signs, such as 3x + 2y or 5p² - 6 Coefficient: the number in front of the variable in a term, e.g. the 4 in 4x³ Quadratic : straight lines that never meet (equal gradients) Quadratic sequence: in which the second differences between consecutive terms are constant Geometric sequence: has a constant ratio between consecutive terms Fibonacci sequence: each term is the sum of the previous two terms Region: the part of a graph which represents inequalities in two variables

YEAR 11 — TRANSFORMING & CONSTRUCTING

y the end of this unit you should be able to:	MathsWatch clip	Video tutorial
• Perform & describe line symmetry & reflection	48	Corbett Corbett
• Perform & describe rotation/rotational symmetry	49	Corbett Corbett
• Perform & describe translations of shapes	50	Corbett Corbett
• Perform & describe enlargements of shapes (R)	148	Corbett Corbett
• Perform & describe negative enlargements of shapes (R) (H)	181a 1816	Corbett
 Identify transformations of shapes 		
• Perform & describe la series of transformations of shapes	182	
• Identify invariant points & lines (H)		<u>Corbett</u>
 Perform standard constructions using ruler & protractor/compasses (R) 	145a 145b	Corbett Corbett
 Solve loci problems 	<u>146</u>	Corbett Corbett Corbett
• Understand & use trig graphs (H)	<u>195a 1956</u>	
• Sketch and identify translations of a graph of a given function (H)	122 <u>1966</u>	<u>Corbett</u>
• Sketch and identify reflections of a graph of a given function (H)	122 196b	Corbett

<u>Keywords</u>

Vertex: a corner of a shape

Line symmetry: when a shape can be divided into two identical halves by a mirror line

Order of rotational symmetry: the number of times a shape looks identical to the original, when rotated 360°

Translation: moving a shape side to side or up and down, without changing the shape's appearance

Invariant: points or lines on a shape which do not move when a particular transformation is applied

Construct: draw accurately, using compasses and/or a protractor.

Ongle bisector: a line that splits an angle into two equal angles

Perpendicular bisector: a line passing through the midpoint between two points and perpendicular to the line between them Locus/loci: the set of points whose position is determined by one or more rules

Equidistant: the same distance

Period: the distance it takes on a graph for a function to repeat itself. For example the period of a cos graph is 360°

YEAR 11 — LISTING & DESCRIBING

By the end of this unit you should be able to:	MathsWatch clip	Video tutorial		
 Work with organised lists 	<u>69</u>			
 Use sample spaces & probability (R) 		<u>Corbett</u> <u>Corbett</u>	Starters	Mains
• Use the product rule for counting (H)		<u>Corbett</u>	Soup	Chicken
• Complete & use venn diagrams (R)	1 <u>85</u> 1276 (H)	<u>Corbett</u>	Prawn Cocktail	Beef
• Construct & interpret plans & elevations (R)	<u>51</u>	<u>Corbett</u>	 Melon	Dizzo
Use data to compare distributions (R)				FIZZU
• Interpret scatter diagrams (R)	129	<u>Corbett</u>	1	

<u>Keywords</u>

Sample space: the set of all possible outcomes

Event: an outcome in probability e.g. rolling a six on a dice is an event

Systematic: careful and methodical

Product rule: a way of finding the total number of outcomes for two or more events by multiplying the number of outcomes for each event together.

Intersection: the crossover part of a venn diagram which represents elements that are in both set 0 and set B Union: elements that are in either set 0 or set B or both.

Elevation: the view of a 3D shape when looked at from the side or front

Plan view: the view of a 3D shape from above

Isometric: a drawing of a 3D shape from an angle which allows the top, side and front of the shape to be visible:

Hypothesis: ta statement which might be true and can then be tested by statistical data

Range: the difference between the greatest and least values in a set of numbers

Outlier: a piece of data which is much greater or less than the rest of the data

Interquartile range: a measure of the spread of data - the difference between the upper and lower quartile values

Correlation: a way to describe whether two values, such as height and weight, are related

Causation: one event causes another to occur

Interpolate: using a line of best fit on a scatter graph to estimate a value from inside a set of data points

Extrapolate: estimating a value from outside a set of data points by extending a line of best fit on a scatter graph

YEAR 11 — SHOW THAT

the end of this unit you should be able to:	MathsWatch clip	Video tutorial
 'Show that' with number 		
 'Show that' with algebra 	193	<u>Corbett</u>
 'Show that' with shape 		<u>Corbett</u>
 'Show that' with angles 		
 'Show that' with data 		
 'Show that' with vectors (H) 	219	<u>Corbett</u>
 'Show that' with congruent triangles 		
• Use formal proof with congruent triangles (H)	<u>166</u>	

<u>Keywords</u>

Surd: a number that can't be simplified to remove a square root, such as v3

Term: a single part of an expression, such as 2x or 3mp or 8

Expression: a combination of two or more terms separated by + or - signs, such as 3x + 2y or $5p^2 - 6$

Identity: an equation that is always true, no matter what values are substituted for the variable, such as $4x \equiv 3x + x$

Similar: same shape and angles, but a different size

Congruent: identical in shape and size

Corresponding: a pair of matching angles or sides which are in the same position in two different similar or congruent shapes Colinear: three or more points which lie on the same straight line

