
Unit 2 | 2.3.1 | Algorithms

Specification & learning objectives

A Level Specification point description

2.3.1a Analysis and design of algorithms for a given situation

2.3.1f Standard algorithms (bubble sort, insertion sort, binary search and linear search)

2.3.1f Implement bubble sort, insertion sort

2.3.1f Implement binary and linear search

2.3.1e Representing, adding data to and removing data from queues and stacks

2.3.1b Compare the suitability of different algorithms for a given task and data set

Resources

PG Online textbook page ref: 184-188,200-203,334-337,340-344

Hodder textbook page ref: 49-59

CraignDave videos for SLR 25

https://www.youtube.com/watch?v=t3OA6uDfqfQ&list=PLCiOXwirraUAHZYAmK8byaiNhUSi_nU2l

Unit 2 | 2.3.1 | Algorithms

Key question: How does the bubble sort work?

Unit 2 | 2.3.1 | Algorithms

Key question: How does the insertion sort work?

Unit 2 | 2.3.1 | Algorithms

Key question: How does the linear search work?

Unit 2 | 2.3.1 | Algorithms

Key question: How does the binary search work? List has to be in order
(smallest to largest)

Unit 2 | 2.3.1 | Algorithms

Comparisons

Unit 2 | 2.3.1 | Algorithms

Typical exam questions

Consider this pseudocode:

Do
swap = false
For position = 0 to listlength-2

If list[position]>list[position+1] then
list.swap[position,position+1]
swap = false

EndIf
Next

Until swap = false

1. The code contains a logic error. Explain what the mistake is. [1]

swap = false inside the condition should be swap = true

2. Identify the name of the algorithm. [1]

Bubble sort

3. Explain why this algorithm is inefficient. [2]

It requires significantly more swaps than other algorithms.
It takes more CPU cycles to solve than other algorithms performing the same sort.
It will require O(n2) swaps in the worst-case.

Unit 2 | 2.3.1 | Algorithms

Typical exam questions

4. Explain an alternative approach to the algorithm. [6]

Insertion sort.
Has a sorted and unsorted list.
First item from the unsorted list is compared to the last item in the sorted list.
If the new item comes before the last item in the sorted list it is shuffled left…
…until it’s place is found…
…and becomes a new item in the sorted list.
Requires fewer swaps than a bubble sort.

Unit 2 | 2.3.1 | Algorithms

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 234, 236, 237, 242, 432 from your A Level Key Terminology should be included and formatted.


You must provide a worked example and pseudocode for each of the following algorithms and data structures:
Bubble sort & Insertion Sort.

 Binary Search & Linear Search.

 Queue & Stack.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Unit 2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence Clarification

 Candidates need to be able to write algorithms using flow charts, pseudocode and program code.

 Candidates need to be able to follow the code as shown in the OCR pseudocode guide but are not expected to write code in this syntax.

 Candidate’s code is not expected to be syntactically correct but must use appropriate code structures.

 Candidates need to understand the need for standard sorting algorithms.

 Candidates need to understand how the sorting algorithms bubble and insertion work and the situations when each can and cannot be used.

 Candidates need to be able to use the algorithms to sort data, and complete, write and correct algorithms to perform each sorting algorithm.

 Candidates need to understand the need for standard searching algorithms.

 Candidates need to understand how the searching algorithms binary and linear work and the situations when each can and cannot be used.

 Candidates need to be able to use the algorithms to search data sets for specific values that may or may not exist in the data set.

 Candidates need to understand when each searching algorithm can and cannot be used.

 Candidates need to be able to complete, write and correct algorithms to perform each searching algorithm.

 Candidates should have experience of using the data structures stacks and queues.

 Candidates need to understand the differences and similarities between stacks and queues.

 Candidates need to be able to add and remove data from both stacks and queues.

 Candidates need to understand how pointers are used within stacks and queues.


Candidates need to understand how stacks and queues can be implemented in a computer system, for example through the use of an array with

pointers.

 Candidates need to be able to read, correct and write algorithms to add and remove data items, and manipulate data items in a stack and queue.

 Candidates need to understand how the choice of algorithm can be affected by the data set.

 Candidates need to understand the impact of specific algorithms on speed and memory use.

Unit 2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence Clarification


Candidates are not expected to know about Big O notation, but should be aware of how and when a program can use more memory, or can take longer

to run and be able to compare algorithms to determine which will use more/less memory, and which will run faster/slower.

