Unit2 | 2.3.1 | Algorithms

Specification & learning objectives

A Level Specification point description

2.3.1a Analysis and design of algorithms for a given situation

2.3.1b The suitability of different algorithms for a given task and data set, in terms of execution time and space

2.3.1c Measures and methods to determine the efficiency of different algorithms, Big O notation.
(Constant, linear, polynomial, exponential, and logarithmic complexity)

2.3.1d Comparison of the complexity of algorithms

2.3.1e Algorithms for the main data structures, (Stacks, queues, trees, linked lists, depth-first (post-order) and breadth-first
traversal of trees)

2.3.1f Standard algorithms (Bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest path algorithm, A*
algorithms, binary search and linear search)

Resources

PG Online textbook page ref: 184-203,209-221,328-363
Hodder textbook page ref: 49-82
CraignDave videos for SLR 26

https://www.youtube.com/watch?v=VJJw-bye8bw&list=PLCiOXwirraUDEHKiMKzXUlGLxKPRicn7I

Unit2 | 2.3.1 | Algorithms

Key question: Which data structures and their operations are used for common algorithms?

~ Algorithms are often grouped into different categories
like search, sorting, and compression algorithms.
Further, algorithms can be described by the approach it
takes to complete a task, such as recursive,
backtracking, divide and conquer, greedy, and brute

\ force. 4
- Y

Algorithms are often paired with data structures,
though they are fundamentally different. Data
Structures are methods of storing data so that an
algorithm can perform operations on it easily.

Some common examples of data structures
are arrays, stacks, queues, linked lists,
trees, graphs, hash tables, and heaps.

Unit2 | 2.3.1 | Algorithms

Key question: How does a merge sort work?

UNSORTED LIST

21451619 1S | 12 1 Tt 8

21451 6 |9 15112 7| 8

2 |45]) 15|12 718

2 45 6 9 15 12 7 8

<€
15| 2813w pue 310§ SISI| [ENpIAIpUl 03Ul ids

2 |45 619 12] 15 718
216 '3 145 718 |12]15 Let there be an unsorted list
WHILE there remains an unsorted list
216|789 |12]|15]45 A 4
Function: Split each list in two # this is a recursive call
SORTED LIST

IF every list is 1 or less in length THEN exit

END WHILE

at this stage every list is either 1 or zero in length
which means by definition they are sorted

Now merge and sort each list pair
WHILE there is more than one list

Function: Sort and combine lists # this is a recursive call
END WHILE

Unit2 | 2.3.1 | Algorithms

Key question: How does a quicksort work? This is a very fast way of sorting medium
to large lists.

1. Pick an item within the array to act as a 'pivot'. The left-most
item is a popular choice.

2. Partition the array so that all values less than the pivot is in
the left part of the array, and all values greater than the pivot
is to its right

3. Repeat the pivot-and-partition process until lists lengths are 1
i.e. sorted

[=1]
[=:]
&
—

Pivet This is very similar to the merge sort
o [3]5]2 3{ procedure except the pivot can be

applied to any item in the unsorted list.
<=3 >=3
31261 3 g8|5]|9]|¢6

<=1 >=1 <=6 / \ >=6
2

-3 | -6 1 5 6 9|8

Unit2 | 2.3.1 | Algorithms

Comparison

Merge sort

O(n logs n)
typical O(n lqggn) O(n loga) comparisons () with linked
Merge sort comparisons lists or O(n)
O(n) natural A
merge sort otherwise
variant

Quick sort

Algorithm Best case Worst case Average case corsnp;;:?dty
- J
O(n logy n)
typical
although O(n?) O(n logy n)
Quick sort some comparisons O(n) typical

variants offer

O(n)

Unit2 | 2.3.1 | Algorithms

Key question: How is Big O notation used to describe the complexity of algorithms?

/ Big O notation is a way to describe the speed or complexity of an
algorithm, and shows the worst case number of operations for a
given input size. It's important to understand the possible run time
for different algorithms, especially when working with large or
growing data sets. Big O notation makes it easier to choose the
\ right algorithm for each task.

~

4

Unit2 | 2.3.1 | Algorithms

Key question: How is Big O notation used to describe the complexity of algorithms?

Here are some common O orders.

O(1) means that the algorithm performance is constant and does not depend on n. The sum-of-
numbers formula we discussed is of arder Q(1).
I‘D(ﬂ) the algorithm performance changes linearly with n. The FOR loop example is of order O(n). I

O (logzn) the algorithm performance changes as the log of n. A binary search algorithm to find an item
in an ordered array is of this order. This is not so good as linear but much better than O{nz) below.
Many excellent algorithms have this order.

D(nz) the algorithm performance changes as the square of n. i.e. It is a quadratic. A bubble sortis of
this order. Therefore the bubble sort algorithm is sensitive to the length of the list to be sorted. Which is
why there are better alternatives for large lists. A nested loop is also quadratic, which is why it is a good
idea to avoid them if possible (sometimes it is not possible).

O(n°®) the algorithm is a power law of ¢, where c is 3 or higher. Some matrix calculation algorithms are a
power law as is common in 3D graphics - but this can be offset by doing it in pure hardware - which is far,
far faster than pure software (but expensive). For example animation companies have hardware render-
farms with thousands of graphic computers all working together, with each one doing one small part of
the overall film.

O(n!) the algorithm is factorial n and is extremely sensitive to the input size and it rapidly becomes
impractical. However, many problems have this characteristic. For example using a brute force approach
to crack a password is of this type, which is why long passwords are a good thing. Many brute force
optimisation problems such as the traveling salesman shortest-path problems are of this type.
Encryption depends on the fact that decryption algorithms are close to O(n!).

Unit2 | 2.3.1 | Algorithms

An important class of algorithms in computer science deals with this question:

If there are a several ways to arrive at a goal, and there are choices to be made
along the way, what are the best set of choices and how do we find that optimal
solution?

This is called a path-finding
problem and it happens in
many fields. For example:

*Navigation- What is the best path to get from A to B along a transport network?
*The internet- What is the most efficient route to get a packet of data to its destination?
*Speech recognition - a computer needs to parse a spoken command with many

possibilities.

slmage recognition - being able to classify/recognise an image from a huge set of
possibilities.

Artificial Intelligence - training neural nets to work out an optimal strategy e.g playing
chess.

*Robotics 2D - controlling their path from A to B.
*Robotics 3D - finding the optimal path for a robotic arm to move in 3D space.
Gaming - path finding and NPC control in game worlds.
°w - help make optimal invest Two examples of these Algorithms are Dijkstra’s
Military - unmanned drones can us ”

,)) shortest path & A*...
*Social network ana|VS|S - frlendShlp IMCWVUIRS, ITIITUCITILTID, [TITIC prupayauurit.

Unit2 | 2.3.1 | Algorithms

Key question: How does Dijkstra’s shortest path algorithm work?

This algorithm is also called the Uniform Cost Search algorithm because no heuristic
h(n) is involved with finding the optimal path. The cost expression of any node is:

f(n)=g(n)

Where g(ﬂ)is the cost of getting from the start to node 71.
When 11 is the target, then the path that offers the

smallest f{ (11) IS the best path to take. The Dijkstra

algorithm is trying to find the A,b,d path below as that is the
lowest cost path from Ato D.

Path f(d)
5 A,c,d 11
Ab,d 6

Unit2 | 2.3.1 | Algorithms
Dijkstra’s shortest path algorithm — Algorithm. X@
Path f(d)

A,cd 11
Ab,d 6

1. Assign a cost of zero to the start node
2. Assign a cost of infinity to every other node

3. Assign every node to an unvisited set
4. From the start node, visit every one of its neighbours
5. If the cost of getting to that neighbour (the edge value) is less than the
current stored cost, replace it with the lower cost (as we started with infinity,
the neighbouring nodes from the start will always be the edge cost)
6. If all its neighbours have been visited, remove the node from the unvisited
list
7. From the nodes just visited, find the one with the least current cost
8. Now visit its neighbours that are still in the unvisited set
9. The cost of each node is the sum of the edge value plus the cost of the prior
node
10. Repeat steps 5 to 9 until all nodes have been visited
11. Identify the least cost path in this last iteration

Unit2 | 2.3.1 | Algorithms G ;

f(d)

° Path
5 A,cd

11

. . 6 Ab,d
Dijkstra’s shortest path algorithm — Pseudocode. G
1 function Dijkstra (graph, start, target) # it is given the graph to work with and the start node
and the target node
2 Create an unvisited empty set Q # this will store all unvisited vertices
3 Create an empty array cost_so_far[] # this will hold vertex costs
4 Create a came_from list {} # identifies which prior node of each node had the least cost
5 For each vertex in graph
6 append v to set Q # every vertex is initially in Q
7 end for
8
9 For each vertex v in Q # initialise the costs array
10 cost_so_far[v] = infinity
11 end for
12 cost_so_far[start] = @ # the start node is set to cost zero
13
14 while Q is not empty # loop until every node has been visited
15 u = the vertex with the least cost in Q # this is start on first iteration
becasue is has cost zero
16 for each neighbour v of u still in Q
17 newcost = cost[u] + edge cost (u to v) #cost of getting to u
plus the edge cost u to v
18 if newcost < costs[v] then # a new lower cost path has been found to v
19 costs[v] = newcosts # update the cost of v
20 came_from[v] = u # this is on the optimal path so far
21 end for
22 remove u from Q
23
23 end while
24 # No more nodes to visit
25 iterate through the came_from list in reverse order # this is the best path found

Unit2 | 2.3.1 | Algorithms

Dijkstra’s shortest path algorithm — Worked example.

method i.e. work out every path's £g) and
determine which one is the smallest.

@ 5. ©
For this small graph, we can use the brute force | 7% @
® 0./

Each path's f(ig) is the sum of the edges along
that path. We want to show that Dijkstra can find
it. In this case the least cost path is a,d,h,qg.

ﬂ Path i

& D . | A,b,g 10

3 ; : @ A,C,f,g 19
0 I e A,ce,g 12

A!dlh)g 9

Unit2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work?

However, if a guess is made, then it\ f(ﬂ):g(ﬂ) +h(n)

may result in getting to the answer

faster (i.e. fewer steps) in other

Kwords an algorithm that does this... y E___may be better than just f(11)=g(b) }

This is what A-star does, it follows the Dijkstra
algorithm but now includes includes a heuristic h(n)
that biases the search towards the target.

Unit2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work?

For example getting from the green node to the blue
node below is clearly better if the algorithm favoured
nodes closer to the target than those further away.

4 Bias search

HFlolw(Nloa|lOE|lw| |-

The diagram below shows the horizontal and vertical
distance of each of green's neighbour from the blue
node. Sometimes this is called the Manhattan

13 heurisitic.

Hlolw(N|oa|lUs|lw N -

horizontal from blue. Every other node around green has a higher heurisitc

than this, therefore the A star algorithm will use this node first. Then it

Unit2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work? — Algorithm.

There are various ways to code up the algorithm. This one is making use of two lists:

open and closed as well as a heuristic function 'h'.

The total cost of getting from the present node to the target is f = g + h where g is the

same one as the Dijkstra algorithm.

“Closed: keeps a list of the

Open: keeps a list of the current nodes' neighbours
current nodes' neighbours that have been fully visited.
that have not peen visited It starts out as empty and it
yet. It starts with only the should contain the target if
start node. * a path was found.

y

H(current node, target
node) : a heuristic
function. This could be the
Manhattan, Euclidean or
any other relevant
calculation.

Unit2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work? — Algorithm.

1. Declare a target node
2. Declare a start node
3. Declare an empty closed and open list

4. Code up a cost function h(node A,node B) to calculate the cost of getting
from node A to node B (this could be Manhattan, Euclidian or any other heurisitic)

initialise the open list

5. Load start into the open list

6. Let start_node_cost = g(start) + h(start,target)

Visit each neighbour of the current node in open and assess its present f = g+h
if the new f is lower than the one stored for that node, then

this path is a better one and so update the path found so far.

8. WHILE open is not empty |

9. Take from open the node which has the lowest f(n) = g(n) + h(n)

19. declare it as current

11. switch current from the open list to closed list

12. FOR each neighbour of current

13. IF neighbour is already in closed THEN ignore (#already fully visited)

14, ELSE

15. IF neighbour not in open

16. add it to open (# this makes the loop recursive)

18. calculate the present_cost of neighbour with f=g+h

19. IF present_cost of neighbour < stored_cost of neighbour (# i.e. better path)
20. set current as parent of neighbour (# the path is building up)

' set stored_cost = present_cost (# store the newfound cost as well
235 END IF

22. END IF

23. NEXT neighbour

24. IF current = target THEN break (# the path has been found)
24. END WHILE

25 IF target in closed

26. # a path has been found
23 OUTPUT the path

28. ELSE

29. # no path was found

30. OUTPUT ‘'no path found'

Unit2 | 2.3.1 | Algorithms

Typical exam questions

The graph in Fig.1 illustrates a path between nodes.

1. Using Dijkstra’s shortest path algorithm, show the shortest path between nodes 1 and 5. You may use a table to illustrate your answer. [6]

Shortest distance from 1

w o WK -

Shortest pathis1=>3=26=25

Unit2 | 2.3.1 | Algorithms

Typical exam questions

2. This algorithm has a polynomial (quadratic) complexity of O(n?)

Draw a graph of the number of nodes against the time to complete to illustrate the efficiency of the algorithm. [2]

400

350

N N w
o [o
o o o

Time to complete
=
Ul
o

100

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Size of data set

Unit2 | 2.3.1 | Algorithms

Target: Overall grade:

Minimum expectations & learning outcomes

O Terms 234-243 from your A Level Key Terminology should be included and formatted.
O You must provide a worked example and pseudocode for each of the following algorithms and data structures:
Tree traversals algorithms.
O Bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest path algorithm, A* algorithms, binary search and linear search.
O You must comment on the time and space complexity of each algorithm.
O Answer the exam questions.
Feedback
Breadth Depth Presentation Understanding
O All O Analysed O Excellent O Excellent
O Most O Explained O Good O Good
O Some O Described O Fair O Fair
O Few O Identified O Poor O Poor

Comment & action required

Unit2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence

Clarification

00
@O0
@O0

e

®@O0

®O0
®O0
®O0
®O0
®O0

®O0

®O0
®O0
®O0
00
®O0
®O0

Candidates need to be able to write algorithms using flow charts, pseudocode and program code.
Candidates need to be able to follow the code as shown in the OCR pseudocode guide but are not expected to write code in syntax.

Candidates’ code is not expected to be syntactically perfect but must use appropriate structures and techniques.

Candidates need to understand that there are a range of possible solutions to a task, and that these algorithms may be different in respect to their
execution time and the amount of memory they make use of.

Candidates need to be able to compare different algorithms for a given data set and demonstrate an understanding of which is more efficient in terms
of speed and/or memory.

Candidates need to be able to compare the use of one or more algorithms against several different data sets, to determine how they will differ in their
use of memory and speed of execution.

Candidates need to understand how the efficiency of an algorithm is measured using Big O notation.

Candidates need to understand the meaning of constant, linear, polynomial, exponential and logarithmic complexity. They need to be able to recognise
and draw each of these complexities of using a graph and be able to read and write the notation.

Candidates need to know the best- and worst-case complexities for the searching and sorting methods.

Candidates need to understand the difference between best case, average case and worst-case complexities and how and why these can differ for an
algorithm.

Candidates need to have an understanding of the situations where queues, stacks, trees etc. can be used and be able to recommend and justify their
use In specific scenarios or programs.

Candidates need to have an understanding of a stack as a dynamic data structure.

Candidates need to be able to add and remove items to a stack.

Candidates need to be able read, trace and write code to implement a stack structure (including adding and removing items).
Candidates need to understand how a stack can be implemented using a different data structure, such as a static array.
Candidates need to have an understanding of a queue as a dynamic data structure.

Candidates need to be able to add and remove data to/from a queue.

Unit2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence

Clarification

00
@O0
@O0
®O0
®@O0
®O0
®O0
00
®O0
®O0
®O0
®O0
®O0
®O0
00
®O0
®O0
®O0
®O0
®O0

Candidates need to be able to read, trace and write code to implement a queue structure (including adding and removing items).
Candidates need to understand how a queue can be implemented using a different data structure, such as a static array.
Candidates need to have an understanding of a tree structure, both binary and multi branch trees.

Candidates need to be able to add and remove data to/from a tree.

Candidates need to be able to read, trace and write code to implement a tree structure (including adding and removing items).
Candidates need to understand how a tree can be implemented using a different data structure, such as a linked list.

Candidates need to understand why and how trees are traversed.

Candidates need to understand how a depth-first (post-order) traversal works and be able to perform the traversal on a tree.
Candidates need to be able to read, trace and write code for a post-order traversal.

Candidates need to understand how a breadth-first traversal works and be able to perform the search on a tree.

Candidates need to be able to read, trace and write code for a breadth-first traversal on a tree.

Candidates’ code is not expected to be syntactically perfect but must use appropriate structures and techniques.

Candidates need to have an understanding of a linked list as a dynamic data structure.

Candidates need to be able to add, remove and search for data to/from/in a linked list.

Candidates need to be able to read, trace and write code to implement a linked list (including adding, removing and search for items).
Candidates need to have an understanding of the need for searching and sorting algorithms.

Candidates need to have an understanding of pre-conditions required to perform a specific algorithm.

Candidates need to understand how a bubble sort works and be able to perform a bubble sort on a set of data.

Candidates need to be able to read, trace and write code to perform a bubble sort.

Candidates need to understand how a merge sort works and be able to perform a merge sort on a set of data.

Unit2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence

Clarification

00
@O0
@O0
®O0
®@O0
®O0
®O0
00
®O0
®O0
®O0
®O0
®O0

Candidates need to be able to read, trace and write code to perform a merge sort.

Candidate need to understand how a quick sort works and be able to perform a quick sort on a set of data.
Candidates need to be able to read, trace and write code to perform a quick sort.

Candidates need to understand how Dijkstra’s shortest path algorithm works.

Candidates need to be able to calculate the shortest path in a graph or tree using Dijkstra’s shortest path algorithm.
Candidates need to be able to read and trace code that performs Dijkstra’s shortest path algorithm.

Candidates need to understand how the A* algorithm works.

Candidates need to be able to calculate the shortest path in a graph or tree using the A* algorithm.

Candidates need to be able to read and trace code that performs the A* algorithm.

Candidates need to understand how a binary search works and be able to perform a binary search on a set of data.
Candidates need to be able to read, trace and write code to perform a binary search.

Candidates need to understand how a linear search works and be able to perform a linear search on a set of data.

Candidates need to be able to read, trace and write code to perform a linear search.

