
Unit 2 | 2.3.1 | Algorithms

Specification & learning objectives

A Level Specification point description

2.3.1a Analysis and design of algorithms for a given situation

2.3.1b The suitability of different algorithms for a given task and data set, in terms of execution time and space

2.3.1c Measures and methods to determine the efficiency of different algorithms, Big O notation.

(Constant, linear, polynomial, exponential, and logarithmic complexity)

2.3.1d Comparison of the complexity of algorithms

2.3.1e Algorithms for the main data structures, (Stacks, queues, trees, linked lists, depth-first (post-order) and breadth-first

traversal of trees)

2.3.1f Standard algorithms (Bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest path algorithm, A*

algorithms, binary search and linear search)

Resources

PG Online textbook page ref: 184-203,209-221,328-363

Hodder textbook page ref: 49-82

CraignDave videos for SLR 26

https://www.youtube.com/watch?v=VJJw-bye8bw&list=PLCiOXwirraUDEHKiMKzXUlGLxKPRicn7I

Unit 2 | 2.3.1 | Algorithms

Key question: Which data structures and their operations are used for common algorithms?

In its most basic form, an algorithm is a set of

detailed step-by-step instructions to complete

a task.

Algorithms are often grouped into different categories

like search, sorting, and compression algorithms.

Further, algorithms can be described by the approach it

takes to complete a task, such as recursive,

backtracking, divide and conquer, greedy, and brute

force.

Algorithms are often paired with data structures,

though they are fundamentally different. Data

Structures are methods of storing data so that an

algorithm can perform operations on it easily.

Some common examples of data structures

are arrays, stacks, queues, linked lists,

trees, graphs, hash tables, and heaps.

Unit 2 | 2.3.1 | Algorithms

Key question: How does a merge sort work?

Unit 2 | 2.3.1 | Algorithms

Key question: How does a quicksort work? This is a very fast way of sorting medium

to large lists.

This is very similar to the merge sort

procedure except the pivot can be

applied to any item in the unsorted list.

Unit 2 | 2.3.1 | Algorithms

Comparison

Unit 2 | 2.3.1 | Algorithms

Key question: How is Big O notation used to describe the complexity of algorithms?

Algorithms are often judged and compared based on their efficiency and the resources

they require. One of the most common ways to evaluate an algorithm is to look at its

time complexity through a method called Big O Notation.

Big O notation is a way to describe the speed or complexity of an

algorithm, and shows the worst case number of operations for a

given input size. It's important to understand the possible run time

for different algorithms, especially when working with large or

growing data sets. Big O notation makes it easier to choose the

right algorithm for each task.

Unit 2 | 2.3.1 | Algorithms

Key question: How is Big O notation used to describe the complexity of algorithms?

Unit 2 | 2.3.1 | Algorithms

An important class of algorithms in computer science deals with this question:

If there are a several ways to arrive at a goal, and there are choices to be made

along the way, what are the best set of choices and how do we find that optimal

solution?

This is called a path-finding

problem and it happens in

many fields. For example:

•Navigation- What is the best path to get from A to B along a transport network?

•The internet- What is the most efficient route to get a packet of data to its destination?

•Speech recognition - a computer needs to parse a spoken command with many

possibilities.

•Image recognition - being able to classify/recognise an image from a huge set of

possibilities.

•Artificial Intelligence - training neural nets to work out an optimal strategy e.g playing

chess.

•Robotics 2D - controlling their path from A to B.

•Robotics 3D - finding the optimal path for a robotic arm to move in 3D space.

•Gaming - path finding and NPC control in game worlds.

•Finance - help make optimal investment choices.

•Military - unmanned drones can use it to plan a route without external commands.

•Social network analysis - friendship networks, influencers, meme propagation.

Two examples of these Algorithms are Dijkstra’s
shortest path & A*…

Unit 2 | 2.3.1 | Algorithms

Key question: How does Dijkstra’s shortest path algorithm work?

This algorithm is also called the Uniform Cost Search algorithm because no heuristic

h(n) is involved with finding the optimal path. The cost expression of any node is:

f(n)=g(n)

Where g(n) is the cost of getting from the start to node n.

When n is the target, then the path that offers the

smallest f(n) is the best path to take. The Dijkstra

algorithm is trying to find the A,b,d path below as that is the

lowest cost path from A to D.

Unit 2 | 2.3.1 | Algorithms

Dijkstra’s shortest path algorithm – Algorithm.

Unit 2 | 2.3.1 | Algorithms

Dijkstra’s shortest path algorithm – Pseudocode.

Unit 2 | 2.3.1 | Algorithms

Dijkstra’s shortest path algorithm – Worked example.

For this small graph, we can use the brute force

method i.e. work out every path's f(g) and

determine which one is the smallest.

Each path's f(g) is the sum of the edges along

that path. We want to show that Dijkstra can find

it. In this case the least cost path is a,d,h,g.

Unit 2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work?

Dijkstra's algorithm does not make any guesses (heurisitc) as to which is the best path to

the target. And because of this, it can find the best path from any node to any other node in

a reasonable amount of steps.

However, if a guess is made, then it

may result in getting to the answer

faster (i.e. fewer steps) in other

words an algorithm that does this…

f(n)=g(n)+h(n)

…may be better than just f(n)=g(n).

This is what A-star does, it follows the Dijkstra

algorithm but now includes includes a heuristic h(n)

that biases the search towards the target.

Unit 2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work?

For example the yellow node has heurisitc 10 as it is 5 vertical and 5

horizontal from blue. Every other node around green has a higher heurisitc

than this, therefore the A star algorithm will use this node first. Then it

recalculates its neighbours values, which again biases the search towards the

top right.

For example getting from the green node to the blue

node below is clearly better if the algorithm favoured

nodes closer to the target than those further away.

The diagram below shows the horizontal and vertical

distance of each of green's neighbour from the blue

node. Sometimes this is called the Manhattan

heurisitic.

Unit 2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work? – Algorithm.

Closed: keeps a list of the

current nodes' neighbours

that have been fully visited.

It starts out as empty and it

should contain the target if

a path was found.

There are various ways to code up the algorithm. This one is making use of two lists:

open and closed as well as a heuristic function 'h'.

The total cost of getting from the present node to the target is f = g + h where g is the

same one as the Dijkstra algorithm.

Open: keeps a list of the

current nodes' neighbours

that have not been visited

yet. It starts with only the

start node.

H(current node, target

node) : a heuristic

function. This could be the

Manhattan, Euclidean or

any other relevant

calculation.

Unit 2 | 2.3.1 | Algorithms

Key question: How does the A* algorithm work? – Algorithm.

Unit 2 | 2.3.1 | Algorithms

The graph in Fig.1 illustrates a path between nodes.

1. Using Dijkstra’s shortest path algorithm, show the shortest path between nodes 1 and 5. You may use a table to illustrate your answer. [6]

Typical exam questions

Vertex Shortest distance from 1 Previous vertex

1 Inf

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Shortest path is 1  3  6  5

Unit 2 | 2.3.1 | Algorithms

2. This algorithm has a polynomial (quadratic) complexity of O(n2)

Draw a graph of the number of nodes against the time to complete to illustrate the efficiency of the algorithm. [2]

Typical exam questions

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
to

 c
o

m
p

le
te

Size of data set

Unit 2 | 2.3.1 | Algorithms

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 234-243 from your A Level Key Terminology should be included and formatted.


You must provide a worked example and pseudocode for each of the following algorithms and data structures:
Tree traversals algorithms.

 Bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest path algorithm, A* algorithms, binary search and linear search.

 You must comment on the time and space complexity of each algorithm.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Unit 2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence Clarification

 Candidates need to be able to write algorithms using flow charts, pseudocode and program code.

 Candidates need to be able to follow the code as shown in the OCR pseudocode guide but are not expected to write code in syntax.

 Candidates’ code is not expected to be syntactically perfect but must use appropriate structures and techniques.


Candidates need to understand that there are a range of possible solutions to a task, and that these algorithms may be different in respect to their

execution time and the amount of memory they make use of.


Candidates need to be able to compare different algorithms for a given data set and demonstrate an understanding of which is more efficient in terms

of speed and/or memory.


Candidates need to be able to compare the use of one or more algorithms against several different data sets, to determine how they will differ in their

use of memory and speed of execution.

 Candidates need to understand how the efficiency of an algorithm is measured using Big O notation.


Candidates need to understand the meaning of constant, linear, polynomial, exponential and logarithmic complexity. They need to be able to recognise

and draw each of these complexities of using a graph and be able to read and write the notation.

 Candidates need to know the best- and worst-case complexities for the searching and sorting methods.


Candidates need to understand the difference between best case, average case and worst-case complexities and how and why these can differ for an

algorithm.


Candidates need to have an understanding of the situations where queues, stacks, trees etc. can be used and be able to recommend and justify their

use In specific scenarios or programs.

 Candidates need to have an understanding of a stack as a dynamic data structure.

 Candidates need to be able to add and remove items to a stack.

 Candidates need to be able read, trace and write code to implement a stack structure (including adding and removing items).

 Candidates need to understand how a stack can be implemented using a different data structure, such as a static array.

 Candidates need to have an understanding of a queue as a dynamic data structure.

 Candidates need to be able to add and remove data to/from a queue.

Unit 2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence Clarification

 Candidates need to be able to read, trace and write code to implement a queue structure (including adding and removing items).

 Candidates need to understand how a queue can be implemented using a different data structure, such as a static array.

 Candidates need to have an understanding of a tree structure, both binary and multi branch trees.

 Candidates need to be able to add and remove data to/from a tree.

 Candidates need to be able to read, trace and write code to implement a tree structure (including adding and removing items).

 Candidates need to understand how a tree can be implemented using a different data structure, such as a linked list.

 Candidates need to understand why and how trees are traversed.

 Candidates need to understand how a depth-first (post-order) traversal works and be able to perform the traversal on a tree.

 Candidates need to be able to read, trace and write code for a post-order traversal.

 Candidates need to understand how a breadth-first traversal works and be able to perform the search on a tree.

 Candidates need to be able to read, trace and write code for a breadth-first traversal on a tree.

 Candidates’ code is not expected to be syntactically perfect but must use appropriate structures and techniques.

 Candidates need to have an understanding of a linked list as a dynamic data structure.

 Candidates need to be able to add, remove and search for data to/from/in a linked list.

 Candidates need to be able to read, trace and write code to implement a linked list (including adding, removing and search for items).

 Candidates need to have an understanding of the need for searching and sorting algorithms.

 Candidates need to have an understanding of pre-conditions required to perform a specific algorithm.

 Candidates need to understand how a bubble sort works and be able to perform a bubble sort on a set of data.

 Candidates need to be able to read, trace and write code to perform a bubble sort.

 Candidates need to understand how a merge sort works and be able to perform a merge sort on a set of data.

Unit 2 | 2.3.1 | Algorithms

Reflection & Revision checklist

Confidence Clarification

 Candidates need to be able to read, trace and write code to perform a merge sort.

 Candidate need to understand how a quick sort works and be able to perform a quick sort on a set of data.

 Candidates need to be able to read, trace and write code to perform a quick sort.

 Candidates need to understand how Dijkstra’s shortest path algorithm works.

 Candidates need to be able to calculate the shortest path in a graph or tree using Dijkstra’s shortest path algorithm.

 Candidates need to be able to read and trace code that performs Dijkstra’s shortest path algorithm.

 Candidates need to understand how the A* algorithm works.

 Candidates need to be able to calculate the shortest path in a graph or tree using the A* algorithm.

 Candidates need to be able to read and trace code that performs the A* algorithm.

 Candidates need to understand how a binary search works and be able to perform a binary search on a set of data.

 Candidates need to be able to read, trace and write code to perform a binary search.

 Candidates need to understand how a linear search works and be able to perform a linear search on a set of data.

 Candidates need to be able to read, trace and write code to perform a linear search.

