Component1 | 1.2.3| Software development

Specification & learning objectives

A Level Specification point description

Understand the waterfall lifecycle, agile methodologies, extreme programming, the spiral model and rapid application
h232 development
1.2.3b The relative merits and drawbacks of different methodologies and when they might be used
1.2.3c Writing and following algorithms

Different test strategies, including black and white box testing and alpha and beta testing

Test programs that solve problems using suitable test data and end user feedback, justify a test strategy for a given

situation

Resources

PG Online textbook page ref: 52-63
Hodder textbook page ref: 116-122

. . Specification
CraignDave videos for SLR 6 b Building

Business
Model

Lmplementing
Bt
Jestng

https://www.youtube.com/watch?v=N6lWeFI_eSA&list=PLCiOXwirraUAAGlMOtnDWXIq82uKwbuAG

Component1 | 1.2.3| Software development

Key question: How are large scale programming projects undertaken?

/

* A way of capturing what the system needs to do
* Ways of breaking up the system into manageable
chunks
* Ways of keeping track of changes
* Ways of allocating staff
* Ways of finding and correcting errors (debugging)

K * Ways of planning and carrying out tests /

Component1 | 1.2.3| Software development

Key question: How are large scale programming projects undertaken?

SDLC: When developing software you go through stages known as the system development lifecycle, these are the steps involved in
developing the software.

Waterfall Model: In the waterfall model these development processes are shown to be flowing down in the model hence why it is
called the waterfall model. Each stage in the waterfall cycle must be done before the next one can be completed and is in linear
structure.

Agile methodologies: When the requirements of the software is constantly changing whilst the software is being developed.
Extreme programming: Two programmers sitting side by side at one computer whilst the code is written, one writes the code whilst
the other checks the validity of the code.

Spiral model: The spiral model is based on risk, and is favoured for large, expensive and complicated projects.

RAD: Rapid application development has no detailed planning, uses minimal planning in favour of rapid prototyping.

4

IMPLEMENTATION

1iME
SOFTWARE
DEVELOPMENT
CYCLE

Component1 | 1.2.3| Software development

Feasibility + Problem
Defining

Requirements

Maintenance

Checks to see whether the planned software
is feasible and seeing the possible problems.

Checks the requirements of the software —
what it needs to achieve.

Design the upcoming software e.g. bits of
code and design screenshots.

Doing the actual code for the program.

Testing to see whether the code works.

Evaluating the final code against the
specification and requirements.

Once the program has been finished it must
also be maintained.

Component1 | 1.2.3| Software development

Feasibility + Problem
Defining

Waterfall Model

The waterfall model is called the waterfall model because
of how the different stages are represented. It is mostly
used in the manufacturing and construction industries as
a way of developing new things and not necessarily new
software. The diagram shows how the program flows
down through each stage. Not only do the arrows go
down the model but they also go up this represents how
programmers often have to develop a previous stage. The
waterfall model is often used on large projects because it
is easy to understand and implement.

Maintenance

Component1 | 1.2.3| Software development

Agile Model

Concentrates on the fact that the requirements will
change frequently whilst the program is made. The
program is made in an iterative way. This means that
with each iteration the requirements change or there are
more requirements. This also means the program can
constantly be shown to the user who can change what
they want. However with this method the price might
increase constantly as the requirements increase.

_ | Technical Support
| m -a
@ Protype ‘ Development =
Methodology

All functionality
done

; Next Iteration
Requirement
Analysts i some errors
are there

Component1 | 1.2.3| Software development

Rapid Application Development

The rapid application development (RAD) methodology is focused on
software that requires prototypes. Using this methodology
developers can design a prototype and then test it and evaluate it to
see whether it reaches the specification and requirements. And if it
doesn’t then they can reassess and redo parts of the prototype.
However if the software works and reaches the spec it can be
released. The development methodology has an emphasis on time
hence the name rapid, prototypes are designed quickly and are not
always the best quality and don’t always work.

Feasibility +

Problem Defining

ﬁ Requirements

L Testing J

Component1 | 1.2.3| Software development

EXt reme p rogra mm i ng Planning/Feedback Loops

Release Plan
L

—— [teration Plan

Has a similar iterative approach like RAD and AGILE but the iterations
are shorter and the requirements are also constantly changing. New
iteration are built quickly and incorporate the new requirements
which often means the software is rushed. Paired programming is an
example of extreme programming; simply it is two people at one
computer coding the program. One codes whilst the other analyses 4
the code and gives instant feedback. /_,,m Progrinming

P s

__—» Acceptance Test

—» Stand Up Meectmng
—.—» Paur Negotiation

_/

e Unat Test

Component1 | 1.2.3| Software development

Spiral Model

The spiral development methodology has an emphasis
on risk, and therefore acknowledges the risk that impacts
lots of large scale development projects. The model has
4 stages evaluate, identify, construct and design each
taking up a section of the circle. The first section looks at
requirements such as unit, subsystem, system and
business requirements and also looks at risk and issues
that might arise. The next section implements the design
of the program and the next stages is to construct the
program including the code and graphics and is therefore
the first prototype. The next section allows the
evaluation of the program to test it, evaluate it against
spec and then evaluate risk.

Component1 | 1.2.3| Software development

Simple to
understand the

approach and
therefore easy to
manage and see if
itis running to
schedule.

Requirement don’t
have to be clear
because the client
gets to see the
software
frequently.

Has an emphasis
on risk. Good for
large projects due
to the risk
management.

Concentrates on
software
requirement
constantly
changing, code is
made in a iterative
way.

Has an emphasis
on code meaning
that is good quality
and is efficient.

Component1 | 1.2.3| Software development

Key question: What are the features of the different ways a program can be tested?

White box testing: Is a testing technique
for software that examines the structure
of the program. The advantage to white
box testing is it reveals errors in hidden
code and spots dead code improving
efficiency. However disadvantages include
that it is expensive to carry out and
broken code may be missed. Person must
have good knowledge of programming
language in order to perform white box
testing.

Black box testing: Black box testing is a
testing technique that focuses on the
input and output of code and less on the
internal workings of the code. Advantages
of black box testing are that in can be
implement on large programs, exposes
problems and the tester can be non-
technical. Disadvantages include that not
all of the code is tested which means the
main problem may be missed. It is
sometimes difficult to test every single
input especially complicated ones.

Component1 | 1.2.3| Software development

Key question: What are the features of the different ways a program can be tested?

Alpha Testing: Takes place at the
developer’s site by teams before release
to customers. The first stage of alpha
testing includes the software being tested
by the on site developers. It is then tested
by the quality assurance tester.
Advantages include that the testing
checks the reliability of the software at an
early stage. It also checks for serious
errors, these errors are detected early.
Disadvantages include that sometimes
developers aren’t happy with the testing.

Beta testing: Takes place at the end of
development, gives users a chance to
check usability, compatibility and
reliability and whether it is functional. If
there are problems testers can provide
developers with information before it is
released. Advantages are that it reduced
product failure and improves product
quality through testers. Whilst
disadvantages include that testers aren’t
always good and may be misleading to the
developers.

Component1 | 1.2.3| Software development

Typical exam questions

1. A software company has been commissioned to produce a new sales solution for a supermarket. This is a major piece of work for the company and the
solution will span many stores as well as serving the needs of their head offices. It is estimated the problem with take up to 14 months to develop fully and it is
essential it is developed on time, to budget and to the user's requirements.

The software teams first major decision is if they should use the extreme programming, spiral, agile or waterfall methodology for development.

State two methodologies you would recommend and provide a justification of your choices. [8]

Methodology 1:

Methodology 2:

Component1 | 1.2.3| Software development

Target: Overall grade:

Minimum expectations & learning outcomes

O Terms 75-80 from your A Level Key Terminology should be included and formatted.
O You must include some illustrations of the various software development methodologies.
O You must include a comparison (e.g. in a table) of the advantages and disadvantages of the software development methodologies.
O You must include at least one program you have written with associated pseudocode.
O You must include a section which outlines the main testing strategies and describes when these test strategies might occur during the software
development process.
O Answer the exam questions.
Feedback
Breadth Depth Presentation Understanding
O All O Analysed O Excellent O Excellent
O Most O Explained O Good O Good
O Some O Described O Fair O Fair
O Few O Identified O Poor O Poor

Comment & action required

Component1 | 1.2.3| Software development

Reflection & Revision checklist

Confidence Clarification

®O 6O Candidates need to understand the following models that can be followed to produce a software system; the waterfall lifecycle, agile methodologies
(specifically extreme programming); the spiral model and rapid application development).

Candidates need to understand the tasks, processes, benefits and drawbacks of each model and the similarities and differences between each. They
need to understand where each model is most suitable to use, and be able to justify the use in a situation.

®O0

®O 0 Candidates need to be able to write algorithms using pseudocode and/or program code.

Candidates need to be able to follow the code as shown in the OCR pseudocode guide, but are not expected to write code in this syntax.
Candidate’s code is not expected to be syntactically correct, but must use appropriate code structures.

®O0

