
Component 1 | 1.4.1| Data types

Specification & learning objectives

A Level Specification point description

1.4.1a Primitive data types, integer, real/floating point, character, string and Boolean

1.4.1b Represent positive integers in binary

1.4.1c Use of sign and magnitude and two's complement to represent negative numbers in binary

1.4.1d Addition and subtraction of binary integers

1.4.1e Represent positive integers in hexadecimal

1.4.1f Convert positive integers between binary hexadecimal and denary

Positive and negative real numbers using normalised floating-point representation

1.4.1g Representation and normalisation of floating-point numbers in binary

1.4.1h Floating point arithmetic, positive and negative numbers, addition and subtraction

1.4.1i Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR

1.4.1j How character sets (ASCII and UNICODE) are used to represent text

Resources

PG Online textbook page ref: 155-177

Hodder textbook page ref: 136-141, 146-155

CraignDave videos for SLR 13

https://www.youtube.com/watch?v=jhVuyveJMgA&list=PLCiOXwirraUBO3Z2dxnIfuNDspmJmorJB

Component 1 | 1.4.1| Data types

Key question: What is meant by the term, 'data type'?

Component 1 | 1.4.1| Data types

Component 1 | 1.4.1| Data types

Key question: How are numbers stored in memory?

In order to run efficiently, computers need to be able to handle all forms of
data. When a variable is defined, a data type usually also needs to be declared.

This gives the computer an understanding of how much memory
needs to be allocated as well as what operations can be applied to

an item of data. For example, you cannot store an integer in a
variable designated for storing text and vice versa.

An arithmetic logic unit (ALU) is a combinational digital electronic
circuit that performs arithmetic and bitwise operations on integer
binary numbers. This is in contrast to a floating-point unit (FPU),

which operates on floating point numbers.

Key question: How does an arithmetic logic unit (ALU) perform arithmetic?

Component 1 | 1.4.1| Data types

Key question: How does an arithmetic logic unit (ALU) perform arithmetic?

Component 1 | 1.4.1| Data types

Key question: How does an arithmetic logic unit (ALU) perform arithmetic?

Component 1 | 1.4.1| Data types

Key question: What examples are there where working with large binary numbers is a
problem, and what is the solution?

• Break down in to
bits of 4.

• Then find the
values for that
section.

• Take the total
and convert it to
hexadecimal
using the scale
on the left of the
table.

• Final place the
letters/numbers
next to one
another.

Component 1 | 1.4.1| Data types

Component 1 | 1.4.1| Data types

Component 1 | 1.4.1| Data types

Component 1 | 1.4.1| Data types

Key question: How does a computer store fractions (real numbers)?

Component 1 | 1.4.1| Data types

Component 1 | 1.4.1| Data types

Component 1 | 1.4.1| Data types

Key question: How does a computer store text in memory?

Component 1 | 1.4.1| Data types

Typical exam questions

1. Convert the denary numbers 96 and 204 into unsigned binary and then calculate the addition of the numbers. Store your answer in 8-bits and show your
working. [5]

96:

204:

2. Explain your answers to part 1. [2]

3. Convert the denary number -96 into binary using sign and magnitude notation. [2]

4. Demonstrate how you subtract two binary numbers using 8-bit two’s complement notation. Use the equivalent denary calculation of 120 – 47. Make sure to
show all your working. [4]

Component 1 | 1.4.1| Data types

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 154-174 from your A Level Key Terminology should be included and formatted.

 You must include a table which summarises the characteristics of the primitive data types.

 You must include some fully worked examples of conversion between denary, hex and binary.


You must include some fully worked examples of arithmetic (addition & subtraction), use of carries, lost carries, why computers don’t use sign and
magnitude for arithmetic, and performing floating point addition and subtraction.

 You must include a diagram which clearly explains bitwise manipulation and masks.

 You must include an explanation of how the character sets ASCII and UNICODE are used to represent text.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Component 1 | 1.4.1| Data types

Reflection & Revision checklist

Confidence Clarification

 Candidates need to have an understanding of programming data types such as integer, real, Boolean, character, string etc.

 Candidates need to be able to choose appropriate data types for a situation or given data.

 Candidates should have experience of programming solutions using these data types.

 Candidates should have knowledge of how to convert from one data type to another (casting).


Candidates should understand how and why computers store data as binary, and that a binary number can have a variety of different interpretations
depending on what is being stored (e.g. numeric, text, image, sound).

 Candidates should be able to convert positive whole numbers to binary and from binary to denary.

 Candidates should know how to store negative numbers using Sign and Magnitude and Two’s Complement.

 Candidates should be able to convert denary numbers to sign and magnitude, and two’s complement – and vice-versa.


Candidates should be able to perform addition and subtraction on integer binary numbers. (These numbers could be positive or negative using two’s
complement representation.)


Candidates need to have an understanding of the purpose and potential uses of hexadecimal for example where and why they are used instead of
binary and the benefits of using hexadecimal over alternatives such as binary.

 Candidates should be able to convert denary numbers to hexadecimal and vice-versa and from binary to hexadecimal and vice-versa.



Candidates should have an understanding of how (positive and negative) real numbers are represented in a binary floating-point representation and
should be able to convert between a denary number and a real binary number. (NB the representation used for the exam is the mantissa and exponent
both represented using two’s complement.)

 Candidates should understand the need for normalised floating-point numbers.

 Candidates should be able to normalise a floating-point number.

 Candidates should have an understanding of how characters are represented in binary.

 Candidates should understand the need for a character set and how a computer makes use of a character set.

 Candidates should be aware of the ASCII and UNICODE character sets and be able to explain the differences between these and the benefits of each.


Candidates should be able to use a character set, or part of a character set, to translate characters into binary and vice-versa. (Candidates are not
expected to memorise any values in a character set)

Component 1 | 1.4.1| Data types

Reflection & Revision checklist

Confidence Clarification

 Candidates should be able to normalise a floating point number.


Candidates should be able to perform addition and subtraction floating point arithmetic including addition and subtraction of both positive and
negative numbers.

 Candidates should be able to perform right and left logical shifts.

 Candidates should understand the effect of right and left shifts on a binary numbers.


Candidates should understand the purpose of using masks with bitwise operators, and should have experience of applying masks using AND, OR and
XOR.

