Component 1 | 1.4.1| Data types

Specification & learning objectives

A Level Specification point description

1.4.1a Primitive data types, integer, real/floating point, character, string and Boolean
1.4.1b Represent positive integers in binary
1.4.1c Use of sign and magnitude and two's complement to represent negative numbers in binary

1.4.1d Addition and subtraction of binary integers
1.4.1e Represent positive integers in hexadecimal
1.4.1f Convert positive integers between binary hexadecimal and denary

Positive and negative real numbers using normalised floating-point representation

14.1g Representation and normalisation of floating-point numbers in binary

1.4.1h Floating point arithmetic, positive and negative numbers, addition and subtraction
1.4.1i Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR

1.4.1j How character sets (ASCIl and UNICOD

Resources

PG Online textbook page ref: 155-177
Hodder textbook page ref: 136-141, 146-155

CraignDave videos for SLR 13

https://www.youtube.com/watch?v=jhVuyveJMgA&list=PLCiOXwirraUBO3Z2dxnIfuNDspmJmorJB

Component 1 | 1.4.1| Data types

Key question: What is meant by the term, 'data type'?

The most basic data types within a language. Integers, characters,
floats and Booleans are all examples of this. A string, however, is a
composite data type.

Integer A whole number (eg, 3, 4, 65465)

Primitive
data types

Real / A number with a decimal (eg. 3.14, 64.78)
floating point

Character A single letter, number or symbol. (e.g., A, 1, 1)
String A combination of characters (eg, “Hello”, “DY10 1XA")
Boolean 1 of 2 possible given values (eg. True/False, Yes/No)

Component 1 | 1.4.1| Data types

Number representation

Denary

Murnbering system which uses base 10 (0-9) — these are our normal
numbers that we use every day. (Otherwise known as decimal)

Binary

Murnbering system which uses base 2 (0s & 1s5) — the only language
that computers truly understand. 0 means off, 1 means on.

Signed

A binary number which has 1 bit allocated to determining the sign of
the number.

Unsigned

A binary number which does not have 1 bit allocated to determining
its sign.

Sign and
magnitude

Uses the left hand bit to represent the sign (0 being + and 1 being -).

SIGN 64 32 16 8 4 2 1

Fixed point

A binary number whereby the decimal point always appears in the
same place.

Floating point

A binary number whereby an exponent determines where the
decimal point should be.

Two's
complement

The most significant bit is considered negative. Meaning that the
largest column value is -128.

-128 64 32 16 8 4 2

Hexadecimal

Murmbering system which uses base 16 (0-9 and A-F). These numbers
are used to represent colours and code in assembly l[anguage, as they
are easier for humans to understand than binary.

AsCI

A character set which uses 7 bits to store a maximum of 128
characters. This uses the binary numbers 0 to 127.

Unicode

The modern standard for representing characters in a computer
systern. Uses 16 bits to allow 65,536 characters to be represented.

Character set

A set of characters used in a language, which are each represented
using a unigue binary number.

Component 1 | 1.4.1| Data types

Key question: How are numbers stored in memory?

In order to run efficiently, computers need to be able to handle all forms of
data. When a variable is defined, a data type usually also needs to be declared.

This gives the computer an understanding of how much memory
needs to be allocated as well as what operations can be applied to
an item of data. For example, you cannot store an integer in a
variable designated for storing text and vice versa.

Key question: How does an arithmetic logic unit (ALU) perform arithmetic?

- Y

An arithmetic logic unit (ALU) is a combinational digital electronic

circuit that performs arithmetic and bitwise operations on integer

binary numbers. This is in contrast to a floating-point unit (FPU),
which operates on floating point numbers.

L 4

Component 1 | 1.4.1| Data types

Key question: How does an arithmetic logic unit (ALU) perform arithmetic?

Sign and magnitude

0 0 1 0 0 1 1 1 =39

1 0 1 0 0 1 1 1 =-39

The number remains the same but the largest bit turns in to a + or —and a 1 means negative and a 0 in that columnis a
positive.

Two’s complement

0 0 1 0 0 1 1 1 =39

1 1 0 1 1 0 0 1 =-39

Use two’s complement for addition etc... As sign and magnitude won’t work. A method of converting positive number

to negative or vice versa. By making the most significant bit a negative and adding up the other bits to equal the
desired number.

Component 1 | 1.4.1| Data types

Ans Addition and subtraction
« 70-41
=41 * To do this you change it so
it's 70+ -41

* Allyoudoisconvert4linto
-41 using two’s
complement.

=70 Then you add.

=-41

=29
To add do the same but

don’t convert one of the

The carry
column,
there is one
to the far left
but you
ighore it.

numbers.

In the carry column for example 1+1=10 the 0 goes in
the current column and the 1 is carried along. Another
example is 1+1+1=11 (the third 1 is carried from
previous sum) so the final 1 stays in the current column
and the first 1 is carried.

Component 1 | 1.4.1| Data types

Key question: What examples are there where working with large binary numbers is a
problem, and what is the solution?

Converting to hexadecimal Break down in to

0-9 bits of 4.

‘;ffll;) e Then find the

-1 valugs for that

D=13 section.

E=14 e Take the total

F=15 0 and convert it to
7 hexadecimal

using the scale
on the left of the
table.

* Final place the
letters/numbers
next to one
another.

So 2E is 45 in hexadecimal

Component 1 | 1.4.1| Data types

Two’s complement binary floating point format
The number of bits in the mantissa and exponent can change. But the following format is used.

Ll 11 11/ 11/ 11/ 11/ J1 1 1 =
Lolo [Y4 | Yol YVig | Yoo | Yea | YVizg | Yose | Yose | 32168 [4] 2

* * * * * * * *

10 bit mantissa 6 bit exponent
In two’s complement in two’s complement

Component 1 | 1.4.1| Data types

Example — Using a positive exponent
The number 0100101000 000100 uses 10 bits mantissa and 6 bits exponent.
The exponent is positive as it begins with a 0. We begin by calculating the

exponent value.
000100 - 4
(point moves 4 steps to the right =»)

This means that our mantissa changes to become

1

01001.01000 = 8+ 1 + §= 9=

Example — Using a negative exponent
The number 0101000000 11110 uses 10 bits mantissa and 6 bits exponent.
The exponent is negative as it begins with a 1. We begin by calculating the

exponent value.
111110 - 000001 — 000010 = -2
(point moves 2 steps to the left €=)

This means that our mantissa changes to become

0.00101 = -+ =
8 32

Component 1 | 1.4.1| Data types

Example — Negative mantissa and negative exponent

The number 1011000000 111110 uses 10 bits mantissa and 6 bits exponent.
The exponent is negative as it begins with a 1. We begin by calculating the
exponent value.

111110 -» 000001 — 000010 = -2
(point moves 2 steps to the left €=)
The mantissa is negative so we find the positive value then move the point into

position
1.011000000 - —-0.100111111 -» —0.101000000
—0.101000000— > —0.00101000000

This means that our mantissa changes to become
1 1

—0.00101000000 = 5t =3

Component 1 | 1.4.1| Data types

Key question: How does a computer store fractions (real numbers)?

Example — Negative mantissa and negative exponent
The number 1011000000 111110 uses 10 bits mantissa and 6 bits exponent.
The exponent is negative as it begins with a 1. We begin by calculating the

exponent value.

111110 - 000001 —» 000010 = -2
(point moves 2 steps to the left €=)
The mantissa is negative so we find the positive value then move the point into

position
1.011000000 -» -0.100111111 -» —=0.101000000
—0.101000000—= > —=0.00101000000

This means that our mantissa changes to become
1 1 5

—0.00101000000 = 5 = %

Component 1 | 1.4.1| Data types

Example — Normalising a positive number

The mantissa of a normalised positive number begins with 01. To get this we
must identify where the first 01 pattern is, and adjust the mantissa and
exponent to suit. For this example we shall use a mantissa of 8 bits and

exponent of 4 bits.
Mantissa: 00010011 Exponent: 0011 (3)

The point must end up here 0001.0011

The normalised Mantissa is 0.10011000, therefore the exponent must be 1 as
the point has to move 1 place to the right = To find its true value.

Our final answer is 010011000 0001

When normalising a positive floating point number, the value is padded with Os
to fill the mantissa.

Component 1 | 1.4.1| Data types

Example — Normalising a negative number

The mantissa of a normalised positive number begins with 10. To get this we
must identify where the first 10 pattern is, and adjust the mantissa and
exponent to suit. For this example we shall use a mantissa of 8 bits and

exponent of 4 bits.
Mantissa: 11100100 Exponent: 0011 (3)

The point must end up here 1110.0100

The normalised Mantissa is 1.0010011, therefore the exponent must be 1 as
the point has to move 1 place to the right =» To find its true value.

Our final answer is 10010011 0001

When normalising a negative floating point number, the value is padded with
1s to fill the mantissa.

Component 1 | 1.4.1| Data types

Key question: How does a computer store text in memory?

Dec Hx Oct Chr Hitml Chr] Dec Hx Oct Himl Chr

(rall) 32 20 040 Space s#64; 96 60 140 `
[start of heading) 33 21 041 ! &FB5; 97 61 141 &«#97:
{ [gtart of text) 34 22 042 " &FE66; 98 62 l42 «#98;
(end of text) 35 23 043 ;¥ L¥E6T; 99 53 143 &=#99;
[end of transmizaion) 36 24 044 - % I 100 64 144 £#100;
[engquiry) 37 25 045 I 3 L 101 65 145 «#101;
T (acknowledge) 38 26 046 ;& F 102 66 146 &#l02;
(bell) 39 27 047 ; G 103 67 147 «#103;
[{backspace) 40 28 050 &¥TZ: 104 68 150 «#104;
[horizontal tab) 4] 29 051 &HT3; 105 69 151 &«#105;
(NL line feed, new line)| 42 24 052 ;o &§74; 106 6A 152 «#106;
[wertical tab) 43 ZE 053 K 107 6B 153 &#l07;
(NP form feed, new page)| 44 2C 054 : &RT0; 108 6C 154 «#106;
[carriage return) 45 2D 055 ; &¥77; 109 6D 155 «#109;
[shift out) 46 ZE 056 HE &ET8; 110 6E 156 «#110;
(shift in) 47 2F 057 O 111 6F 157 «#l11;
(data link escape) 45 30 060 s#80; 112 70 160 &#ll2;
[device control 1) 49 31 06l &FGL; 113 71 161 «#113:;
[dewvice control 2) 50 32 062 =WB2; 114 72 162 «#114:
(device control 3) 51 33 063 £#83; 115 73 163 £#115;
(dewvice control 4) 52 34 064 116 74 164 &«#L16;
. (negative acknowledge) 53 35 065 U 117 75 165 u
(synchronous idle) 54 36 066 V 118 76 lea &«#118; °
[end of trans. bhlock) 55 37 067 ;o &®ET; 119 77 167 &«#119;
[cancel) 56 38 070 L¥BE; 120 78 170 «<#120:
(end of medium) 57 39 071 : 9 Y 121 79 171 &#Ll21;
[substitute) 58 34 072 H Z 122 T4 172 «#l2a:
[eacape) 59 3B 073 ;o2 &F9L; 123 7B 173 «#123;
{file =meparator) 0 3C 074 < L2 124 7C 174 F124;
(group separator) 075 s#93; 125 7D 175 }
(record separator) 62 3E 076 = «#94; ~ 1126 TE 176 &«#126;
{unit separator) 63 3F 077 ? _: _ |127 TF 177 «#127; DEL

Source: www.LookupTables.com

=
il
=

= o

ol o L o W = - S =
[= M

o

@

WOOOD =] h LA s WD e O
[

e

HE D OO E DW= 0 s WO
.
00 =] T 0n s W [b= O ™
g4 ccuwurogToOopR

[=

et B o BT — = e B I T s e - e B B~ -F I T

B

Component 1 | 1.4.1| Data types

Typical exam questions

1. Convert the denary numbers 96 and 204 into unsigned binary and then calculate the addition of the numbers. Store your answer in 8-bits and show your
working. [5]

96:

204:

2. Explain your answers to part 1. [2]

3. Convert the denary number -96 into binary using sign and magnitude notation. [2]

4. Demonstrate how you subtract two binary numbers using 8-bit two’s complement notation. Use the equivalent denary calculation of 120 — 47. Make sure to
show all your working. [4]

Component 1 | 1.4.1| Data types

Target: Overall grade:

Minimum expectations & learning outcomes

O Terms 154-174 from your A Level Key Terminology should be included and formatted.
O You must include a table which summarises the characteristics of the primitive data types.
O You must include some fully worked examples of conversion between denary, hex and binary.
O You must include some fully worked examples of arithmetic (addition & subtraction), use of carries, lost carries, why computers don’t use sign and
magnitude for arithmetic, and performing floating point addition and subtraction.
O You must include a diagram which clearly explains bitwise manipulation and masks.
O You must include an explanation of how the character sets ASCIl and UNICODE are used to represent text.
O Answer the exam questions.
Feedback
Breadth Depth Presentation Understanding
O All O Analysed O Excellent O Excellent
O Most O Explained O Good O Good
O Some O Described O Fair O Fair
O Few O Identified O Poor O Poor

Comment & action required

Component 1 | 1.4.1| Data types

Reflection & Revision checklist

Confidence

Clarification

00
®O0
®O0
®O0

@O0

®O0
60
@O0

@O0

®O0
®O0

®O0

®O0
®O0
®O0
®O0
®O0

®O0

Candidates need to have an understanding of programming data types such as integer, real, Boolean, character, string etc.
Candidates need to be able to choose appropriate data types for a situation or given data.
Candidates should have experience of programming solutions using these data types.

Candidates should have knowledge of how to convert from one data type to another (casting).

Candidates should understand how and why computers store data as binary, and that a binary number can have a variety of different interpretations
depending on what is being stored (e.g. numeric, text, image, sound).

Candidates should be able to convert positive whole numbers to binary and from binary to denary.
Candidates should know how to store negative numbers using Sign and Magnitude and Two’s Complement.

Candidates should be able to convert denary numbers to sign and magnitude, and two’s complement — and vice-versa.

Candidates should be able to perform addition and subtraction on integer binary numbers. (These numbers could be positive or negative using two’s
complement representation.)

Candidates need to have an understanding of the purpose and potential uses of hexadecimal for example where and why they are used instead of
binary and the benefits of using hexadecimal over alternatives such as binary.

Candidates should be able to convert denary numbers to hexadecimal and vice-versa and from binary to hexadecimal and vice-versa.

Candidates should have an understanding of how (positive and negative) real numbers are represented in a binary floating-point representation and
should be able to convert between a denary number and a real binary number. (NB the representation used for the exam is the mantissa and exponent
both represented using two’s complement.)

Candidates should understand the need for normalised floating-point numbers.

Candidates should be able to normalise a floating-point number.

Candidates should have an understanding of how characters are represented in binary.

Candidates should understand the need for a character set and how a computer makes use of a character set.

Candidates should be aware of the ASCII and UNICODE character sets and be able to explain the differences between these and the benefits of each.

Candidates should be able to use a character set, or part of a character set, to translate characters into binary and vice-versa. (Candidates are not
expected to memorise any values in a character set)

Component 1 | 1.4.1| Data types

Reflection & Revision checklist

Confidence Clarification

®OO Candidates should be able to normalise a floating point number.

®O 0O Candidates should be able to perform addition and subtraction floating point arithmetic including addition and subtraction of both positive and
negative numbers.

®OO Candidates should be able to perform right and left logical shifts.
®OO Candidates should understand the effect of right and left shifts on a binary numbers.

Tl Candidates should understand the purpose of using masks with bitwise operators, and should have experience of applying masks using AND, OR and
XOR.

