
Unit 2 | 2.2.1 | Programming techniques

Specification & learning objectives

A Level Specification point description

2.2.1a Programming constructs: sequence, iteration, branching

2.2.1b Recursion, how it can be used and compares to an iterative approach

2.2.1c Global and local variables

2.2.1d Modularity, functions and procedures, parameter passing by value and reference

2.2.1e Use of an IDE to develop/debug a program

2.2.1f Use of object-oriented techniques

Resources

PG Online textbook page ref: 288-326

Hodder textbook page ref: 37-48

CraignDave videos for SLR 23

https://www.youtube.com/watch?v=xBAMBDyDu0s&list=PLCiOXwirraUBC3Ie0Mjvhdn9Vv6fjtnJ8

Unit 2 | 2.2.1 | Programming techniques

Key question: What are the 3 basic programming constructs?

Iteration

Sequence

Selection
Choosing which lines of code to run or not to
run, based on whether certain conditions have
been met.

Code that is executed in order, one line at a time.

Where a sequence of instructions is repeated
multiple times

Unit 2 | 2.2.1 | Programming techniques

'**
'Procedure to display the game over message and get high score name
Sub game_over_message()

Dim key As Char
Console.SetCursorPosition(17, 12)
Console.Write("G A M E O V E R")
System.Threading.Thread.Sleep(3000)
Console.SetCursorPosition(14, 14)
Console.Write("Press a key to continue")
key = Console.ReadKey.KeyChar

End Sub

'**
'Procedure to compute and display the high score table
Sub high_scores()

Dim counter1, counter2 As Integer
Dim key As Char
Dim isHighScore As Boolean
Dim name As String

'check if score is a high score
isHighScore = False
counter1 = 0

'go through scores and check if score is a high score
Do

If (score > highScoreValue(counter1)) Then isHighScore = True
If (isHighScore <> True) Then counter1 = counter1 + 1

Loop Until (counter1 = 9) Or (isHighScore = True)

'if it is a high score, ask for name and add to list
If (isHighScore = True) Then

Console.Clear()
Console.SetCursorPosition(5, 5)
Console.Write("N E W H I G H S C O R E")
Console.SetCursorPosition(5, 7)
Console.Write("Please enter your name: ")
name = Console.ReadLine()

End If

' move other scores down one place
For counter2 = 9 To counter1 + 1 Step -1

highScoreName(counter2) = highScoreName(counter2 - 1)
highScoreValue(counter2) = highScoreValue(counter2 - 1)

Next

'add high score to list
highScoreName(counter1) = name
highScoreValue(counter1) = score

'output high scores
Console.Clear()
Console.SetCursorPosition(5, 5)
Console.Write("T O D A Y 'S H I G H S C O R E S")
For counter1 = 0 To 9

Console.SetCursorPosition(5, 7 + counter1)
Console.Write(highScoreName(counter1))
Console.SetCursorPosition(20, 7 + counter1)
Console.Write(highScoreValue(counter1))

Next
Console.SetCursorPosition(5, 23)
Console.Write("Press a key to play")
key = Console.ReadKey.KeyChar

End Sub

Sequence

Iteration
(count

controlled)
Iteration

(condition
controlled)

Branching

3 basic programming constructs – Example.

Unit 2 | 2.2.1 | Programming techniques

1. What is a local variable?
A variable which is defined and can only be
used within one part of the program
(normally a single function or procedure).
It’s scope is limited to the block of code in
which it is declared.

2. What is a global variable?
A variable which is defined outside of any
single procedure / function and can be used
anywhere in the program. It’s scope spans
the entire program.

Module Module1
Dim gameSpeed As Integer
Dim score As Integer
Dim foodTimer As Integer

'*************************************
'Procedure to drop food into the arena
Sub drop_food()

Dim x, y As Integer
Do

x = Rnd() * 49
y = Rnd() * 23

Loop Until (arena(x, y) = " ")
arena(x, y) = "+"
Console.SetCursorPosition(x, y)
Console.Write("+")
foodTimer = 200

End Sub

Global
variables

Local
variables

Key question: What is the difference between local and global variables and when should they
be used?

Unit 2 | 2.2.1 | Programming techniques

Key question: What is the difference between procedures and functions?

Function

Procedure A procedure is a small section of a program that
performs a specific task. Procedures can be used
repeatedly throughout a program.

A function is also a small section of a

program that performs a specific task

that can be used repeatedly throughout a

program, but the task is usually a

calculation. Functions perform the task
and return a value to the main program.

When writing programs, we should avoid long, repetitive code. Procedures and

functions help to keep our programs simple and short, in a more modular manner.

Unit 2 | 2.2.1 | Programming techniques

• Program easier to read, and easier to debug.
• Enables different programmers to work on different parts of the

code.
• Enables routines to be reused in other programs.
• Reduces need for duplicated code.
• Functions can be stored in libraries for other programmers to

use in their programs.
• Library functions are already tested.
• Library functions make use of another programmer’s skill.
• Library functions can be written in other languages because they

are already compiled.

Advantages to writing programs in a modular way.

Unit 2 | 2.2.1 | Programming techniques

Key question: What is the difference between passing parameters by value and by reference?

In a computer solution each procedure / function needs to have some data to work with.

This data is called the parameters if they are called at the same time as the procedure.

There are two ways of telling the system, what these values are.

1. One is to give the values as part of the statement, for example RECTANGLE(3,4).
• This is called passing the parameters by value.

2. The alternative is to give the locations where the values can be found, for example
RECTANGLE(x,y).
• If the values x and y are defined as local variables then the parameters are still

being passed by value because any changes made to them will not be allowed
to affect their values outside the procedure.

• However, if the values of x and y are global variables then any changes made
during execution of the procedures will be carried back to the calling program
when the procedure is exited and the parameters are said to have been passed
by reference.

Unit 2 | 2.2.1 | Programming techniques

Modularity, functions and procedures, parameter passing by value and reference – An example.

Module Module1
Dim gameSpeed As Integer
Dim score As Integer
Dim foodTimer As Integer

'*************************************
'Procedure to drop food into the arena
Sub drop_food()

Dim x, y As Integer
Do

x = Rnd() * 49
y = Rnd() * 23

Loop Until (arena(x, y) = " ")
arena(x, y) = "+"
Console.SetCursorPosition(x, y)
Console.Write("+")
foodTimer = 200

End Sub

By
reference

By value

Unit 2 | 2.2.1 | Programming techniques

Modularity, functions and procedures, parameter passing by value and reference – An example.

Module Module1

Function TotalTax(ByVal Cost As Single) As Double

Dim NationalTax, CityTax As Double

NationalTax = Cost * 0.05 'National tax is 5%

CityTax = Cost * 0.015 'City tax is 1%

TotalTax = NationalTax + CityTax

End Function

Sub Main()

Dim TotalCost, SalesPrice As Double

SalesPrice = 500

TotalCost = SalesPrice + TotalTax(SalesPrice)

End Sub

End Module

Function
name

Arguments needed by function
and their data type

Data type for
return value

Local
variables

Local
variables

Returning call.
Result gets passed

back out of
function here

Call to function
TotalTax

Single parameter
being passed into
function TotalTax

Unit 2 | 2.2.1 | Programming techniques

Key question: What are the features of an IDE?

When developing programs we utilise an Integrated Development

Environment (IDE). This is a program that allows a programmer to write,

develop and test code much more quickly than if the program were written,

compiled and then run as an independent program.

A typical IDE consists of a user interface to allow the

selection of objects, commands or help, a debugger which

will highlight errors in the syntax of the code, and a

compiler which will convert the source code and allow the

programmer to test the program.

Unit 2 | 2.2.1 | Programming techniques

Stepping through code

Live performance
statistics

Syntax highlighting

Breakpoint

Line
numbers

Watch window
with variable

tracing

Errors and
translator

diagnostics

Automatic indentation

Key question: What are the features of an IDE?

Unit 2 | 2.2.1 | Programming techniques

Key question: What is recursion and how does it compare to using an iterative approach?

Recursion is the ability that a subroutine (see later sections) has to call on itself to complete

its task until a condition is met. Recursive solutions can be harder to produce but can often

lead to very elegant solutions to a problem.

A recursive solution has two parts: the recursive and the limiter. The recursive is the

code that calls itself for another iteration and passes new variable values, whereas the

limiter is what stops the code from creating an infinite loop.

Recursive methods act as a loop that calls on itself and runs every line of code using the

result of the previous call in the current, and will pass the current result into the next call

until the exit condition is met.

One of the best examples of recursion is factorials. Factorials are given by the mathematical

formula:

n! = n × (n-1)!

This means a factorial is the product of a number times the factorial of the previous number. For

example, 4!

4! = 4 × 3! = 3 × 2! = 2 × 1!

4! = 4 × 3 × 2 × 1 = 24

Unit 2 | 2.2.1 | Programming techniques

Key question: How are objects constructed?

As procedural programs became more widespread, people started to notice that types

of data and the procedures/functions associated with them tended to be grouped

together; this was the start of what is known as object-oriented programming (OOP).

At their most basic level, object-oriented programming languages are concerned

with the data for the objects you are trying to manipulate rather than the logic

required to manipulate them.

An object is an instantiation (or an instance) of a class. Each object will have their

states and behaviours that are local to that object. For example, a computer can have

states (on, off) and behaviours (compute, load, shut down…). Objects are created

using a constructor and a reference that has been assigned to a variable of the class

type.

Unit 2 | 2.2.1 | Programming techniques

Typical exam questions

1. What is meant by the term sequence? [1]

2. What is meant by the term iteration? [1]

3. What is meant by the term program branch? [1]

4. What is the difference between global and local variables? [4]

5. State two similarities and one difference between a function and a procedure. [3]

Unit 2 | 2.2.1 | Programming techniques

Typical exam questions

6. What features does an integrated development environment (IDE) offer a programmer, to assist them in writing and debugging code? [6]

Unit 2 | 2.2.1 | Programming techniques

Target: Overall grade:

Minimum expectations & learning outcomes

 Terms 201-224 from your A Level Key Terminology should be included and formatted.

 You must include annotated code that shows sequence, iteration & branching.

 You must include annotated code that explains the difference between global and local variables.

 You must include some annotated code that shows the difference between functions & procedures.

 You must include some annotated code that shows the difference between passing by value and by reference.

 You must include an annotated screen shot of a development IDE, explaining some of the features.

 You must include an example of how recursion compares to iteration.

 You must include some annotated code that shows your understanding of object-oriented techniques.

 Answer the exam questions.

Feedback

Breadth Depth Presentation Understanding

 All  Analysed  Excellent  Excellent

 Most  Explained  Good  Good

 Some  Described  Fair  Fair

 Few  Identified  Poor  Poor

Comment & action required

Unit 2 | 2.2.1 | Programming techniques

Reflection & Revision checklist

Confidence Clarification

 Candidates need to be able to understand the constructs of sequence, iteration and branching.



Candidates must be able to use these constructs independently of each other and combine them to produce a solution. These include the selection

statements of if (include elseif and else) and select case statements. These include both condition-based iteration (e.g. while, repeat until) and count

controlled iteration (e.g. for) – as well as how condition based can be used as count controlled iteration.

 Candidates need to be able to read code using these constructs, create code using these constructs and trace code (for example using a trace table).


Candidates need to understand the use and need for variables in a program, and must understand the difference, benefits and drawbacks of both

global and local variables.


Candidates must be able to recognise where local and global variables are used, and the impact that these have on the program, for example the

amount of memory used by the program.

 Candidates need to understand how a program using global variables can be changed to use local variables – and vice-versa.

 Candidates need to understand what is meant by modular code, and how this can be produced using functions and procedures.

 Candidates need to understand the differences between functions and procedures and how each is used within a program.

 Candidates need to be able to read, trace and write code using functions and procedures.

 Candidates need to understand the purpose and use of parameters within a program, and how they are used in functions and procedures.

 Candidates will need to be able to read, trace and write code that makes use of parameters.


Candidates need to understand the difference between passing a parameter by value and by reference, they need to understand the benefits and

drawbacks of each, recommending which should be used for a given situation.

 Candidates need to be able to read, trace and write code that makes use of parameters passed both by value and by reference.

 Candidates should have had experience of using an IDE to produce code.


Candidates need to understand how an IDE can be used to produce code and understand the range of features and tools that are within an IDE that can

be used to help produce and debug a program.

