Unit2 | 2.2.1 | Programming techniques

Specification & learning objectives

A Level Specification point description

2.2.1a  Programming constructs: sequence, iteration, branching

2.2.1b  Recursion, how it can be used and compares to an iterative approach

2.2.1c  Global and local variables

2.2.1d  Modularity, functions and procedures, parameter passing by value and reference

2.2.1e Use of an IDE to develop/debug a program

2.2.1f  Use of object-oriented techniques

Resources

PG Online textbook page ref: 288-326
Hodder textbook page ref: 37-48
CraignDave videos for SLR 23



https://www.youtube.com/watch?v=xBAMBDyDu0s&list=PLCiOXwirraUBC3Ie0Mjvhdn9Vv6fjtnJ8

Unit2 | 2.2.1 | Programming techniques

Key question: What are the 3 basic programming constructs?

Se q U e n Ce Code that is executed in order, one line at a time.

Celtin Wmessenendeofinicion's eated
SEIECHON e st e



Unit2 | 2.2.1 | Programming techniques

3 basic programming constructs — Example.

Vip s s . .
¥ sk sk ok ok ok ok sk ok sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk sk ok sk ok s sk sk sk sk sk ok sk ok sk ok sk ok ok ok ok if it is a high score, ask for name and add to list

s 3
brocedure to dicpla If (isHighScore = True) Then )
o y : Console.Clear()
Sub game_over_message
gim Eey As Char‘g 0 Console.SetCursorPosition(5, 5) Sequence
Console.SetCursorPosition(17, 12) Console.Write("NEW HIGH SCORE") L )
Console.Write("G AME OV E R") Console.SetCursorPosition(s, 7) } s teration 3
System.Threading. Thread.Sleep(3000) Console.Write( Pleasg enter your name: ")
Console.SetCursorPosition(14, 14) name = Console.ReadlLine() (C()Llnt
Console.Write("Press a key to continue") - End If J troll d)
key = Console.ReadKey.KeyChar ) " 4 N \ controllie J
End Sub move other scores down one place T
- J ( For counter2 = 9 To counterl + 1 Step -1 ) Iteration
F sk ok ok Kok oK ok o K K oK ok oK ok KKK ok ok ok R KK oK oK ok o R R K KK oK ok ok o K highScoreName(counter2) = highScoreName(counter2 - 1) (Cond|t|0n
'Procedure to compute and display the high score table highScorevalue(counter2) = highScoreValue(counter2 - 1) trolled)
( i Next L controlie )
Sub high_scores() ) L ) - <

|
1
|
1
|
1
|
1
|
1
|
1
D?m counterl, counter2 As Integer : '2dd hish <core to list
Dim key As Char ) ( highScoreName(counterl) = name ) Branching

1

|

1

|

1

|

1

|

1

|

1

I

highScorevalue(counterl) = score

Dim isHighScore As Boolean
Dim name As String

‘output high scores
Console.Clear()
Console.SetCursorPosition(5, 5)

‘check if score is a high score
isHighScore = False
\_ counterl = 0 _J

. Console. Write("T ODAY 'S HIGH S CORES") _J
' = A
'go through scores and check if score is a high score For counterl = @ To 9 .
( Do A Console.SetCursorPosition(5, 7 + counterl)
If (score > highScoreValue(counterl)) Then isHighScore = True Conso}e.Wr'lte(hlghSCQP‘feNam;(counter‘l))
If (isHighScore <> True) Then counterl = counterl + 1 Conso e.Se"cCur‘s?r‘Posulon( 0, 7 + counterl)
Loop Until (counterl = 9) Or (isFighScore = True) Console.Write(highScoreValue(counterl))
. J |\ Next _/
( R

Console.SetCursorPosition(5, 23)
Console.Write("Press a key to play")
key = Console.ReadKey.KeyChar

End Sub




Unit2 | 2.2.1 | Programming techniques

Key question: What is the difference between local and global variables and when should they

be used?

1. What is a local variable?

A variable which is defined and can only be
used within one part of the program
(normally a single function or procedure).
It’s scope is limited to the block of code in
which it is declared.

2. What is a global variable?

A variable which is defined outside of any
single procedure / function and can be used
anywhere in the program. It’s scope spans
the entire program.

Global
variables

Module Modulel
[Dim gameSpeed As Integerj

Dim score As Integer
Dim foodTimer As Integer

T3k sk 3k 3k 5k 3k sk 3k 3k Skosk >k sk sk 3k Sk sk sk ok sk Sk ok sk sk sk skosk sk skook sk skosk ksk ok k

'Procedure to drop food into the arena

Sub dr.‘op food() Local
[Dlm X, y As Integer :
= variables

X = Rnd() * 49

y = Rnd() * 23
Loop Until (arena(x, y) =" ")
arena(x, y) = "+"
Console.SetCursorPosition(x, y)
Console.Write("+")
foodTimer = 200

End Sub




Unit2 | 2.2.1 | Programming techniques

Key question: What is the difference between procedures and functions?

When writing programs, we should avoid long, repetitive code. Procedures and
functions help to keep our programs simple and short, in a more modular manner.

P rO Ce d U re A procedure is a small section of a program that

performs a specific task. Procedures can be used
repeatedly throughout a program.

Function




Unit2 | 2.2.1 | Programming techniques

Advantages to writing programs in a modular way.

* Program easier to read, and easier to debug.

* Enables different programmers to work on different parts of the
code.

* Enables routines to be reused in other programs.

* Reduces need for duplicated code.

* Functions can be stored in libraries for other programmers to
use in their programs.

* Library functions are already tested.

* Library functions make use of another programmer’s skill.

* Library functions can be written in other languages because they
are already compiled.



Unit2 | 2.2.1 | Programming techniques

Key question: What is the difference between passing parameters by value and by reference?

In a computer solution each procedure / function needs to have some data to work with.
This data is called the parameters if they are called at the same time as the procedure.
There are two ways of telling the system, what these values are.

1. Oneis to give the values as part of the statement, for example RECTANGLE(3,4).
e Thisis called passing the parameters by value.

2. The alternative is to give the locations where the values can be found, for example
RECTANGLE(x,y).

 |[fthevalues x and y are defined as local variables then the parameters are still
being passed by value because any changes made to them will not be allowed
to affect their values outside the procedure.

* However, if the values of x and y are global variables then any changes made
during execution of the procedures will be carried back to the calling program
when the procedure is exited and the parameters are said to have been passed
by reference.



Unit2 | 2.2.1 | Programming techniques

Modularity, functions and procedures, parameter passing by value and reference — An example.

Module Modulel
Dim gameSpeed As Integer
Dim score As Integer
Dim foodTimer As Integer

"3k ok 3k Sk ok >k ok ok sk ok sk Sk sk sk Sk ok sk ok sk sk ok sk Sk ok sk Sk ok sk ok ok sk ok skok kok

'"Procedure to drop food into the arena
Sub drop_food()
Dim x, y As Integer
Do
X = Rnd() * 49
y = Rnd() * 23
Loop Until (arena(x, y) ="
arena(x, y) = "+"
ConsolelSetCursorPosition(x, y))
ConsolelWrite("+") |
foodTimer = 200

End Sub

By
reference

By value




Unit2 | 2.2.1 | Programming techniques

Modularity, functions and procedures, parameter passing by value and reference — An example.

Function
name

Arguments needed by function } Data type for J
Module Modulel

and their data type return value

Function [TotalTaxI(ByVal Cost As Single)][As Double]

Local
variables

Dim [NationalTax, CityTax]As Double

NationalTax = Cost * ©0.05 "National tax is 5%

Returning call. CityTax = Cost * 0.015 'City tax is 1%
Result gets passed TotalTax]= NationalTax + CityTax
back out of
function here End Function
Sub Main()
Dim [TotalCost, SalesPr‘ice] As Double
Local alesPrice = 500
variables
TotalCost = SalesPrice +[Tota1Tax(SalesPr‘ice)]
End Sub . i
Call to function Single parameter
End Module TotalTax being passed into

function TotalTax




Unit2 | 2.2.1 | Programming techniques

Key question: What are the features of an IDE?

When developing programs we utilise an Integrated Development
Environment (IDE). This is a program that allows a programmer to write,

develop and test code much more quickly than if the program were written,
compiled and then run as an independent program.

A typical IDE consists of a user interface to allow the
selection of objects, commands or help, a debugger which
will highlight errors in the syntax of the code, and a
compiler which will convert the source code and allow the
programmer to test the program.



Unit2 | 2.2.1 | Programming techniques

Key question: What are the features of an IDE?

Stepping through code

w Snakes (In Development) (Debugging) - Micresoft Visual Studio
File Edit View Project Build Debug
TR VIR

© Process: [4388] Snakes (In Development).ex =

Team Tools Test

Modulelvb™ + X

Analyze

Lifecycle Events = Thread: [2180] Main Thread

S

Window
P Continue = | 57 | o] ‘

-

Help
|.) v

. inE|
Stack Frame:

[8] Snakes (In Development) - =.Mc:dulel - @ drop_food -
8 Dim wormDirection As Char 'direction the worm is moving: u,d,1l,r +
9 Dim wormAlive As Boolean 'whether the worm is alive or dead flag -
10 Dim wormGrow As Boolean 'whether the worm needs to grow a segment or not T[]
11 Dim gameSpeed As Integer 'game delay in milliseconds
|_|ne 12 Dim score As Integer rent score
13 Dim foodTimer As Integer ' b core counts down until eaten or zero
numbers ,—~
5 Const forever As Boolean = False game execution forever
16
17 = PR EEROR R R R KRR KRR R R R . . .
18 'Procedure to drop food into the ar SyntaX hlghllghtlng
19 = Sub drop_food()
29 Dim x, y As Integer
21 Do
e 22 x = Rnd() * 49
23 y = Rnd() * 23
24 Loop Until (arena(x, y) =
. 25 arena(x, y) = "+" HP H
BreaprInt 26 Console.SetCursorPosition(x, y) AUtomatIC Indentatlon
27 Console_Write("+"
28 foodTimer = 200 -
121% =« 4
Watch 1 A Il | Error List
Name Value Type Entire Sclution - | €3 0 Errors
@ x 0 Integer -
&y wormGrow False Boolean Search Error List
&y worméAlive True Boolean Code  Description

&ty score
&y gameSpeed
iy foodTimer

Integer
Integer

do
with variable

i, BC4Z10.

runtime.

runtime.

¥ 5 Quick Launch [Ctri-|GRa] | g A x
1 Craig Sargent ~
‘ n 5 i @ Application Insights ~ -

Snakes_In_Development_Modulel.drop_ ~ _

Diagnostic Tools

'E} Select Tools *

&, ZoomIn X Zoom Out j; Reset View

Diagnastics session: 0 seconds (96 ms selected)

II 1s

4 Events
1]

Live prformance
statistics

4 Process Memory GC ¥ Snapsho

100
)
4 CPU (% of all processors)
100 100
0 ]
Events Memory Usage CPU Usage
Search Events P-
Event Time | Duration Thread
t» Breakpoint Hit 0.09s 96ms [2180]

Variable 'name’ is used before it has Snakes (In
been assigned a value. A null
reference exception could result at

Variable 'name’ is used before it has Snakes (In
been assigned a value. A null
reference exception could result at

wan owaw  Breakpoints Exception Settings Command Window Immediate Window Output JlgRizd

1 2 Warnings | ) 0 Messages | | Build + IntelliSense

File
Modulel.vb

Line

Project Suppression St.. Y

218 Active

Development)

Modulel vb 218

Development)

4 Publish




Unit2 | 2.2.1 | Programming techniques

Key question: What is recursion and how does it compare to using an iterative approach?

Recursion is the ability that a subroutine (see later sections) has to call on itself to complete
its task until a condition is met. Recursive solutions can be harder to produce but can often
lead to very elegant solutions to a problem.

A recursive solution has two parts: the recursive and the limiter. The recursive is the
code that calls itself for another iteration and passes new variable values, whereas the
limiter is what stops the code from creating an infinite loop.

Recursive methods act as a loop that calls on itself and runs every line of code using the
result of the previous call in the current, and will pass the current result into the next call
until the exit condition is met.

One of the best examples of recursion is factorials. Factorials are given by the mathematical
formula:

nl = nx (n-1)!
This means a factorial is the product of a number times the factorial of the previous number. For
example, 4!

4! = 4 x 31 =3 x 21 =2 x 1]

4! = 4 x 3 x 2 x 1 = 24



Unit2 | 2.2.1 | Programming techniques

Key question: How are objects constructed?

As procedural programs became more widespread, people started to notice that types
of data and the procedures/functions associated with them tended to be grouped
together; this was the start of what is known as object-oriented programming (OOP).

At their most basic level, object-oriented programming languages are concerned

with the data for the objects you are trying to manipulate rather than the logic
required to manipulate them.

An object is an instantiation (or an instance) of a class. Each object will have their
states and behaviours that are local to that object. For example, a computer can have
states (on, off) and behaviours (compute, load, shut down...). Objects are created
using a constructor and a reference that has been assigned to a variable of the class
type.



Unit2 | 2.2.1 | Programming techniques

Typical exam questions

1. What is meant by the term sequence? [1]

2. What is meant by the term iteration? [1]

3. What is meant by the term program branch? [1]

4. What is the difference between global and local variables? [4]

5. State two similarities and one difference between a function and a procedure. [3]



Unit2 | 2.2.1 | Programming techniques

Typical exam questions

6. What features does an integrated development environment (IDE) offer a programmer, to assist them in writing and debugging code? [6]



Unit2 | 2.2.1 | Programming techniques

Target: Overall grade:

Minimum expectations & learning outcomes

O Terms 201-224 from your A Level Key Terminology should be included and formatted.
O You must include annotated code that shows sequence, iteration & branching.
O You must include annotated code that explains the difference between global and local variables.
O You must include some annotated code that shows the difference between functions & procedures.
O You must include some annotated code that shows the difference between passing by value and by reference.
O You must include an annotated screen shot of a development IDE, explaining some of the features.
O You must include an example of how recursion compares to iteration.
O You must include some annotated code that shows your understanding of object-oriented techniques.
O Answer the exam questions.
Feedback
Breadth Depth Presentation Understanding
O All O Analysed O Excellent O Excellent
O Most O Explained O Good O Good
O Some O Described O Fair O Fair
O Few O Identified O Poor O Poor

Comment & action required



Unit2 | 2.2.1 | Programming techniques

Reflection & Revision checklist

Confidence

Clarification

®O0

®O0

00
®O0

®O0

®e0
®O0
®O0
60
®O0
®O0

@O0

@O0
®O0

60

Candidates need to be able to understand the constructs of sequence, iteration and branching.

Candidates must be able to use these constructs independently of each other and combine them to produce a solution. These include the selection
statements of if (include elseif and else) and select case statements. These include both condition-based iteration (e.g. while, repeat until) and count
controlled iteration (e.g. for) — as well as how condition based can be used as count controlled iteration.

Candidates need to be able to read code using these constructs, create code using these constructs and trace code (for example using a trace table).

Candidates need to understand the use and need for variables in a program, and must understand the difference, benefits and drawbacks of both
global and local variables.

Candidates must be able to recognise where local and global variables are used, and the impact that these have on the program, for example the
amount of memory used by the program.

Candidates need to understand how a program using global variables can be changed to use local variables — and vice-versa.

Candidates need to understand what is meant by modular code, and how this can be produced using functions and procedures.
Candidates need to understand the differences between functions and procedures and how each is used within a program.

Candidates need to be able to read, trace and write code using functions and procedures.

Candidates need to understand the purpose and use of parameters within a program, and how they are used in functions and procedures.

Candidates will need to be able to read, trace and write code that makes use of parameters.

Candidates need to understand the difference between passing a parameter by value and by reference, they need to understand the benefits and
drawbacks of each, recommending which should be used for a given situation.

Candidates need to be able to read, trace and write code that makes use of parameters passed both by value and by reference.

Candidates should have had experience of using an IDE to produce code.

Candidates need to understand how an IDE can be used to produce code and understand the range of features and tools that are within an IDE that can
be used to help produce and debug a program.



